forked from JYWa/MATCHA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_mpi.py
237 lines (191 loc) · 8.29 KB
/
train_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import numpy as np
import time
import argparse
import sys
from mpi4py import MPI
from math import ceil
from random import Random
import networkx as nx
import torch
import torch.distributed as dist
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.multiprocessing import Process
from torch.autograd import Variable
import torchvision
from torchvision import datasets, transforms
import torch.backends.cudnn as cudnn
import torchvision.models as models
cudnn.benchmark = True
import resnet
import vggnet
import wrn
import util
from graph_manager import FixedProcessor, MatchaProcessor
from communicator import decenCommunicator, ChocoCommunicator, centralizedCommunicator
def sync_allreduce(model, rank, size):
senddata = {}
recvdata = {}
for param in model.parameters():
tmp = param.data.cpu()
senddata[param] = tmp.numpy()
recvdata[param] = np.empty(senddata[param].shape, dtype = senddata[param].dtype)
torch.cuda.synchronize()
comm.barrier()
comm_start = time.time()
for param in model.parameters():
comm.Allreduce(senddata[param], recvdata[param], op=MPI.SUM)
torch.cuda.synchronize()
comm.barrier()
comm_end = time.time()
comm_t = (comm_end - comm_start)
for param in model.parameters():
param.data = torch.Tensor(recvdata[param]).cuda()
param.data = param.data/float(size)
return comm_t
def run(rank, size):
# set random seed
torch.manual_seed(args.randomSeed+rank)
np.random.seed(args.randomSeed)
# load data
train_loader, test_loader = util.partition_dataset(rank, size, args)
num_batches = ceil(len(train_loader.dataset) / float(args.bs))
# load base network topology
subGraphs = util.select_graph(args.graphid)
# define graph activation scheme
if args.matcha:
GP = MatchaProcessor(subGraphs, args.budget, rank, size, args.epoch*num_batches, True)
else:
GP = FixedProcessor(subGraphs, args.budget, rank, size, args.epoch*num_batches, True)
# define communicator
if args.compress:
communicator = ChocoCommunicator(rank, size, GP, 0.9, args.consensus_lr)
else:
communicator = decenCommunicator(rank, size, GP)
# select neural network model
model = util.select_model(10, args)
model = model.cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=5e-4,
nesterov=args.nesterov)
# guarantee all local models start from the same point
# can be removed
sync_allreduce(model, rank, size)
# init recorder
comp_time, comm_time = 0, 0
recorder = util.Recorder(args,rank)
losses = util.AverageMeter()
top1 = util.AverageMeter()
tic = time.time()
itr = 0
# start training
for epoch in range(args.epoch):
model.train()
# Start training each epoch
for batch_idx, (data, target) in enumerate(train_loader):
start_time = time.time()
# data loading
data, target = data.cuda(non_blocking = True), target.cuda(non_blocking = True)
# forward pass
output = model(data)
loss = criterion(output, target)
# record training loss and accuracy
record_start = time.time()
acc1 = util.comp_accuracy(output, target)
losses.update(loss.item(), data.size(0))
top1.update(acc1[0], data.size(0))
record_end = time.time()
# backward pass
loss.backward()
update_learning_rate(optimizer, epoch, itr=batch_idx, itr_per_epoch=len(train_loader))
# gradient step
optimizer.step()
optimizer.zero_grad()
end_time = time.time()
d_comp_time = (end_time - start_time - (record_end - record_start))
comp_time += d_comp_time
# communication happens here
d_comm_time = communicator.communicate(model)
comm_time += d_comm_time
print("batch_idx: %d, rank: %d, comp_time: %.3f, comm_time: %.3f,epoch time: %.3f " % (batch_idx+1,rank,d_comp_time, d_comm_time, comp_time+ comm_time), end='\r')
toc = time.time()
record_time = toc - tic # time that includes anything
epoch_time = comp_time + comm_time # only include important parts
# evaluate test accuracy at the end of each epoch
test_acc = util.test(model, test_loader)
recorder.add_new(record_time,comp_time,comm_time,epoch_time,top1.avg,losses.avg,test_acc)
print("rank: %d, epoch: %.3f, loss: %.3f, train_acc: %.3f, test_acc: %.3f epoch time: %.3f" % (rank, epoch, losses.avg, top1.avg, test_acc, epoch_time))
if rank == 0:
print("comp_time: %.3f, comm_time: %.3f, comp_time_budget: %.3f, comm_time_budget: %.3f" % (comp_time, comm_time, comp_time/epoch_time, comm_time/epoch_time))
if epoch%10 == 0:
recorder.save_to_file()
# reset recorders
comp_time, comm_time = 0, 0
losses.reset()
top1.reset()
tic = time.time()
recorder.save_to_file()
def update_learning_rate(optimizer, epoch, itr=None, itr_per_epoch=None,
scale=1):
"""
1) Linearly warmup to reference learning rate (5 epochs)
2) Decay learning rate exponentially (epochs 30, 60, 80)
** note: args.lr is the reference learning rate from which to scale up
** note: minimum global batch-size is 256
"""
base_lr = 0.1
target_lr = args.lr
lr_schedule = [100, 150]
lr = None
if args.warmup and epoch < 5: # warmup to scaled lr
if target_lr <= base_lr:
lr = target_lr
else:
assert itr is not None and itr_per_epoch is not None
count = epoch * itr_per_epoch + itr + 1
incr = (target_lr - base_lr) * (count / (5 * itr_per_epoch))
lr = base_lr + incr
else:
lr = target_lr
for e in lr_schedule:
if epoch >= e:
lr *= 0.1
if lr is not None:
# print('Updating learning rate to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--name','-n', default="default", type=str, help='experiment name')
parser.add_argument('--description', type=str, help='experiment description')
parser.add_argument('--model', default="res", type=str, help='model name: res/VGG/wrn')
parser.add_argument('--lr', default=0.8, type=float, help='learning rate')
parser.add_argument('--momentum', default=0.0, type=float, help='momentum')
parser.add_argument('--epoch', '-e', default=10, type=int, help='total epoch')
parser.add_argument('--bs', default=64, type=int, help='batch size on each worker')
parser.add_argument('--warmup', action='store_true', help='use lr warmup or not')
parser.add_argument('--nesterov', action='store_true', help='use nesterov momentum or not')
parser.add_argument('--matcha', action='store_true', help='use MATCHA or not')
parser.add_argument('--budget', type=float, help='comm budget')
parser.add_argument('--graphid', default=0, type=int, help='the idx of base graph')
parser.add_argument('--dataset', default='cifar10', type=str, help='the dataset')
parser.add_argument('--datasetRoot', type=str, help='the path of dataset')
parser.add_argument('--p', '-p', action='store_true', help='partition the dataset or not')
parser.add_argument('--savePath' ,type=str, help='save path')
parser.add_argument('--compress', action='store_true', help='use chocoSGD or not')
parser.add_argument('--consensus_lr', default=0.1, type=float, help='consensus_lr')
parser.add_argument('--randomSeed', type=int, help='random seed')
args = parser.parse_args()
if not args.description:
print('No experiment description, exit!')
exit()
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
run(rank, size)