-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_pointcmt.py
331 lines (263 loc) · 11 KB
/
train_pointcmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.lr_scheduler as lr_scheduler
import random
import os
import numpy as np
import argparse
import pprint
import importlib
import models
from time import time
from emdloss import emd_module
from data.modelnet40_mv_loader import ModelNet40_OfflineFeatures, ModelNet40
from utils.all_utils import PerfTrackTrain, PerfTrackVal, TrackTrain, smooth_loss
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_loss(task, loss_name, data_batch, out):
"""
Returns the tensor loss function
:param task:
:param loss_name:
:param data_batch: batched data; note not applied data_batch
:param out: output from the model
:param dataset_name:
:return: tensor
"""
if task == 'cls':
label = data_batch['label'].to(out['logit'].device)
if loss_name == 'cross_entropy':
loss = F.cross_entropy(out['logit'], label)
elif loss_name == 'smooth':
loss = smooth_loss(out['logit'], label)
else:
assert False
return loss
def validate(loader, model, task='cls'):
model.eval()
def get_extra_param():
return None
perf = PerfTrackVal(task, extra_param=get_extra_param())
time_dl = 0
time_gi = 0
time_model = 0
time_upd = 0
with torch.no_grad():
time5 = time()
for i, data_batch in enumerate(loader):
time1 = time()
time2 = time()
out, _ = model(data_batch['pointcloud'].cuda())
time3 = time()
perf.update(data_batch=data_batch, out=out)
time4 = time()
time_dl += (time1 - time5)
time_gi += (time2 - time1)
time_model += (time3 - time2)
time_upd += (time4 - time3)
time5 = time()
print(f"Time DL: {time_dl}, Time Get Inp: {time_gi}, Time Model: {time_model}, Time Update: {time_upd}")
return perf.agg()
def scale(gt_pc, pr_pc):
B = gt_pc.shape[0]
min_gt = gt_pc.min(axis=1)[0]
max_gt = gt_pc.max(axis=1)[0]
min_pr = pr_pc.min(axis=1)[0]
max_pr = pr_pc.max(axis=1)[0]
length_gt = torch.abs(max_gt - min_gt)
length_pr = torch.abs(max_pr - min_pr)
diff_gt = length_gt.max(axis=1, keepdim=True)[0] - length_gt
diff_pr = length_pr.max(axis=1, keepdim=True)[0] - length_pr
size_pr = length_pr.max(axis=1)[0]
size_gt = length_gt.max(axis=1)[0]
scaling_factor_gt = 1. / size_gt
scaling_factor_pr = 1. / size_pr
new_min_gt = (min_gt - diff_gt) / 2.
new_min_pr = (min_pr - diff_pr) / 2.
box_min = torch.ones_like(new_min_gt) * -0.5
adjustment_factor_gt = box_min - (scaling_factor_gt * new_min_gt.permute((1, 0))).permute((1, 0))
adjustment_factor_pr = box_min - (scaling_factor_pr * new_min_pr.permute((1, 0))).permute((1, 0))
pred_scaled = (pr_pc.permute(2, 1, 0) * scaling_factor_pr).permute(2, 1, 0) + adjustment_factor_pr.reshape(B, -1, 3)
gt_scaled = (gt_pc.permute(2, 1, 0) * scaling_factor_gt).permute(2, 1, 0) + adjustment_factor_gt.reshape(B, -1, 3)
return gt_scaled, pred_scaled
def train(loader, model, decoder_model, optimizer, EmdLoss, task='cls'):
decoder_model.eval()
model.train()
def get_extra_param():
return None
perf = PerfTrackTrain(task, extra_param=get_extra_param())
time_forward = 0
time_backward = 0
time_data_loading = 0
train_fe_loss = 0.0
train_cle_loss = 0.0
time3 = time()
for i, data_batch in enumerate(loader):
time1 = time()
batch_size = data_batch['pointcloud'].shape[0]
mv_feature = data_batch['multiview']
out, pc_feature = model(data_batch['pointcloud'])
loss = get_loss(task, 'smooth', data_batch, out)
if not cfg.no_pointcmt:
mv2pc_logits = model(mvf=mv_feature, fc_only=True)
pc_dec_pc = decoder_model(pc_feature)
mv_dec_pc = decoder_model(mv_feature)
gt_scaled, pr_scaled = scale(mv_dec_pc, pc_dec_pc)
cleloss = F.kl_div(out['logit'].softmax(dim=1).log(), (mv2pc_logits['logit']).softmax(dim=1),
reduction='sum')
loss += 0.3 * cleloss
fe_loss, _ = EmdLoss(pr_scaled, gt_scaled, 0.05, 3000)
fe_loss = torch.sqrt(fe_loss).mean(1).mean()
loss += 30 * fe_loss
else:
cleloss = torch.Tensor([0])
fe_loss = torch.Tensor([0])
train_fe_loss += fe_loss.item() * batch_size
train_cle_loss += cleloss.item() * batch_size
perf.update_all(data_batch=data_batch, out=out, loss=loss)
time2 = time()
loss.backward()
optimizer.step()
optimizer.zero_grad()
time_data_loading += (time1 - time3)
time_forward += (time2 - time1)
time3 = time()
time_backward += (time3 - time2)
if i % 100 == 0:
print(
f"[{i}/{len(loader)}] avg_loss: {perf.agg_loss()}, FW time = {round(time_forward, 2)}, "
f"BW time = {round(time_backward, 2)}, DL time = {round(time_data_loading, 2)}")
print('Feature enhancement loss is ', train_fe_loss * 1.0 / 9840)
print('Classifier enhencement loss is ', train_cle_loss * 1.0 / 9840)
return perf.agg(), perf.agg_loss()
def save_checkpoint(id, epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg):
model.cpu()
path = f"./checkpoints/{cfg.exp_name}/model_{id}.pth"
torch.save({
'cfg': vars(cfg),
'epoch': epoch,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'lr_sched_state': lr_sched.state_dict(),
'bnm_sched_state': bnm_sched.state_dict() if bnm_sched is not None else None,
'test_perf': test_perf,
}, path)
print('Checkpoint saved to %s' % path)
model.to(DEVICE)
def load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path):
print(f'Recovering model and checkpoint from {model_path}')
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(checkpoint['model_state'])
else:
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
model = model.module
optimizer.load_state_dict(checkpoint['optimizer_state'])
# for backward compatibility with saved models
if 'lr_sched_state' in checkpoint:
lr_sched.load_state_dict(checkpoint['lr_sched_state'])
if checkpoint['bnm_sched_state'] is not None:
bnm_sched.load_state_dict(checkpoint['bnm_sched_state'])
else:
print("WARNING: lr scheduler and bnm scheduler states are not loaded.")
return model
def get_model(cfg):
if cfg.model_name == 'pointnet2':
model = models.PointNet2(
num_class=cfg.num_class)
else:
raise NotImplementedError
return model
def get_metric_from_perf(task, perf, metric_name):
if task in ['cls', 'cls_trans']:
assert metric_name in ['acc']
metric = perf[metric_name]
else:
assert False
return metric
def get_optimizer(params):
optimizer = torch.optim.AdamW(params, lr=1e-3, weight_decay=5e-2)
lr_sched = lr_scheduler.CosineAnnealingLR(
optimizer,
1000,
eta_min=0,
last_epoch=-1)
bnm_sched = None
return optimizer, lr_sched, bnm_sched
def entry_train(cfg):
dataset_train = ModelNet40_OfflineFeatures(cfg.data_root, split='train')
loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=cfg.batch_size,
num_workers=8, shuffle=True, drop_last=True,
pin_memory=(torch.cuda.is_available()))
loader_test = torch.utils.data.DataLoader(
ModelNet40(
data_path=cfg.data_root,
partition='test',
),
num_workers=8,
batch_size=cfg.batch_size,
shuffle=False,
drop_last=False,
pin_memory=True)
model = get_model(cfg)
model.to(DEVICE)
model = nn.DataParallel(model)
decoder_model = importlib.import_module('models.cmpg')
decoder_model = decoder_model.get_model().to(DEVICE)
decoder_model = nn.DataParallel(decoder_model)
params = list(model.parameters())
optimizer, lr_sched, bnm_sched = get_optimizer(params)
deccheckpoint = torch.load(cfg.cmpg_checkpoint)
decoder_model.load_state_dict(deccheckpoint['model_state'])
decoder_model.eval()
log_dir = f"./checkpoints/{cfg.exp_name}"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
track_train = TrackTrain(early_stop_patience=1000)
EmdLoss = emd_module.emdModule()
print(str(model))
for epoch in range(cfg.epochs):
print(f'\nEpoch {epoch}')
start = time()
print('Training..')
train_perf, train_loss = train(loader_train, model, decoder_model, optimizer, EmdLoss)
pprint.pprint(train_perf, width=80)
print('\nTesting..')
test_perf = validate(loader_test, model)
pprint.pprint(test_perf, width=80)
track_train.record_epoch(
epoch_id=epoch,
train_metric=get_metric_from_perf('cls', train_perf, 'acc'),
test_metric=get_metric_from_perf('cls', test_perf, 'acc'))
if track_train.save_model(epoch, 'test'):
print('Saving best model on the test set')
save_checkpoint('best_test', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if epoch % 25 == 0:
save_checkpoint(f'{epoch}', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
lr_sched.step(epoch)
end = time()
last = end - start
print('every epoch lasts for ', last)
print('Saving the final model')
save_checkpoint('final', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', type=str, default='pointnet2_pointcmt', help='Name of the experiment')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--data_root', type=str, default='dataset/ModelNet40/data/', help='Name of the data root')
parser.add_argument('--model_name', type=str, default='pointnet2', help='Name of the model')
parser.add_argument('--batch_size', type=int, default=32, help='Size of batch)')
parser.add_argument('--epochs', type=int, default=1000, help='number of episode to train ')
parser.add_argument('--cmpg_checkpoint', type=str, default="pretrained/modelnet40/cmpg.pth", help='decoder model of multiview')
parser.add_argument('--num_class', type=int, default=40)
parser.add_argument('--no_pointcmt', default=False, action='store_true')
cfg = parser.parse_args()
print(cfg)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
entry_train(cfg)