-
Notifications
You must be signed in to change notification settings - Fork 2
/
Evaluate_PSNR_SSIM.m
200 lines (182 loc) · 5.3 KB
/
Evaluate_PSNR_SSIM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
function Evaluate_PSNR_SSIM()
% %==========================================================================
% % This script produces the PSNR and SSIM results with BI, BD, and Dn modeld for our CVPR18 paper (Tables 2, 3)
% % The training and test codes would be released soon.
% % @inproceedings{zhang2018residual,
% % title={Residual Dense Network for Image Super-Resolution},
% % author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
% % booktitle={CVPR},
% % year={2018}
% % }
% % by Yulun Zhang, yulun100@gmail.com
% % 2018/02/25
% %==========================================================================
clear all; close all; clc
%% set path
%% HR
folder = '/titan_data1/lxy/dataset/Satellite_Imagery/RSSCN7/RSSCN7_HR';
filepaths = [];
filepaths = [filepaths; dir(fullfile(folder, '*.jpg'))];
scale = 8;
fid = fopen('./RDN_x8.txt','w');
PSNR_all = zeros(1, length(filepaths));
SSIM_all = zeros(1, length(filepaths));
for idx_im = 1:length(filepaths)
name_HR = filepaths(idx_im).name;
name_SR = strrep(name_HR, '.jpg', 'x8.png');
im_HR = imread(fullfile(folder, name_HR));
im_SR = imread(fullfile('/titan_data1/zdy/Satellite/RSSCN7/Results/', name_SR));
% change channel for evaluation
if 3 == size(im_HR, 3)
im_HR_YCbCr = single(rgb2ycbcr(im2double(im_HR)));
im_HR_Y = im_HR_YCbCr(:,:,1);
im_SR_YCbCr = single(rgb2ycbcr(im2double(im_SR)));
im_SR_Y = im_SR_YCbCr(:,:,1);
else
im_HR_Y = single(im2double(im_HR));
im_SR_Y = single(im2double(im_SR));
end
% calculate PSNR, SSIM
[PSNR_all(idx_im), SSIM_all(idx_im)] = Cal_Y_PSNRSSIM(im_HR_Y*255, im_SR_Y*255, scale, scale);
fprintf('x%d %d %s: PSNR= %f SSIM= %f\n', scale, idx_im, name_SR, PSNR_all(idx_im), SSIM_all(idx_im));
fprintf(fid,'x%d %d %s: PSNR= %f SSIM= %f\n', scale, idx_im, name_SR, PSNR_all(idx_im), SSIM_all(idx_im));
end
fprintf('--------Mean--------\n');
fprintf('x%d: PSNR= %f SSIM= %f\n', scale, mean(PSNR_all), mean(SSIM_all));
fclose(fid);
end
function [psnr_cur, ssim_cur] = Cal_Y_PSNRSSIM(A,B,row,col)
% shave border if needed
if nargin > 2
[n,m,~]=size(A);
A = A(row+1:n-row,col+1:m-col,:);
B = B(row+1:n-row,col+1:m-col,:);
end
% RGB --> YCbCr
if 3 == size(A, 3)
A = rgb2ycbcr(A);
A = A(:,:,1);
end
if 3 == size(B, 3)
B = rgb2ycbcr(B);
B = B(:,:,1);
end
% calculate PSNR
A=double(A); % Ground-truth
B=double(B); %
e=A(:)-B(:);
mse=mean(e.^2);
psnr_cur=10*log10(255^2/mse);
% calculate SSIM
[ssim_cur, ~] = ssim_index(A, B);
end
function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
if (nargin < 2 || nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) || (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = 255; %
end
if (nargin == 3)
if ((M < 11) || (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);
end