-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathdemo.py
239 lines (204 loc) · 11.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
import os
import argparse
import random
from pathlib import Path
import numpy as np
from PIL import Image
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.coco import make_coco_transforms
from models import build_model
def get_args_parser():
parser = argparse.ArgumentParser('SAM-DETR: Accelerating DETR Convergence via Semantic-Aligned Matching', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--lr_linear_proj_names', default=[], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
parser.add_argument('--multiscale', default=False, action='store_true')
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine',),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int, help="dimension of the FFN in the transformer")
parser.add_argument('--hidden_dim', default=256, type=int, help="dimension of the transformer")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int, help="Number of attention heads in the transformer attention")
parser.add_argument('--num_queries', default=300, type=int, help="Number of query slots")
parser.add_argument('--smca', default=False, action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2.0, type=float, help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5.0, type=float, help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2.0, type=float, help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1.0, type=float)
parser.add_argument('--dice_loss_coef', default=1.0, type=float)
parser.add_argument('--cls_loss_coef', default=2.0, type=float)
parser.add_argument('--bbox_loss_coef', default=5.0, type=float)
parser.add_argument('--giou_loss_coef', default=2.0, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str, default='data/coco')
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing. We must use cuda.')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint, empty for training from scratch')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--eval_every_epoch', default=1, type=int, help='eval every ? epoch')
parser.add_argument('--save_every_epoch', default=1, type=int, help='save model weights every ? epoch')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only."
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, post_processors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Total number of params in model: ', n_parameters)
def match_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if "backbone.0" not in n and not match_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if "backbone.0" in n and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# dataset_train = build_dataset(image_set='train', args=args)
# dataset_val = build_dataset(image_set='val', args=args)
#
# if args.distributed:
# sampler_train = DistributedSampler(dataset_train)
# sampler_val = DistributedSampler(dataset_val, shuffle=False)
# else:
# sampler_train = torch.utils.data.RandomSampler(dataset_train)
# sampler_val = torch.utils.data.SequentialSampler(dataset_val)
#
# batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
# data_loader_train = DataLoader(dataset_train,
# batch_sampler=batch_sampler_train,
# collate_fn=utils.collate_fn,
# num_workers=args.num_workers)
#
# data_loader_val = DataLoader(dataset_val,
# args.batch_size,
# sampler=sampler_val,
# drop_last=False,
# collate_fn=utils.collate_fn,
# num_workers=args.num_workers)
#
# if args.dataset_file == "coco_panoptic":
# # We also evaluate AP during panoptic training, on original coco DS
# coco_val = datasets.coco.build("val", args)
# base_ds = get_coco_api_from_dataset(coco_val)
# else:
# base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
transforms = make_coco_transforms("val")
DETECTION_THRESHOLD = 0.5
inference_dir = "./images/"
image_dirs = os.listdir(inference_dir)
image_dirs = [filename for filename in image_dirs if filename.endswith(".jpg") and 'det_res' not in filename]
model.eval()
with torch.no_grad():
for image_dir in image_dirs:
img = Image.open(os.path.join(inference_dir, image_dir)).convert("RGB")
w, h = img.size
orig_target_sizes = torch.tensor([[h, w]], device=device)
img, _ = transforms(img, target=None)
img = img.to(device)
img = img.unsqueeze(0) # adding batch dimension
outputs = model(img)
results = post_processors['bbox'](outputs, orig_target_sizes)[0]
indexes = results['scores'] >= DETECTION_THRESHOLD
scores = results['scores'][indexes]
labels = results['labels'][indexes]
boxes = results['boxes'][indexes]
# Visualize the detection results
import cv2
img_det_result = cv2.imread(os.path.join(inference_dir, image_dir))
for i in range(scores.shape[0]):
x1, y1, x2, y2 = round(float(boxes[i, 0])), round(float(boxes[i, 1])), round(float(boxes[i, 2])), round(float(boxes[i, 3]))
img_det_result = cv2.rectangle(img_det_result, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.imwrite(os.path.join(inference_dir, "det_res_" + image_dir), img_det_result)
if __name__ == '__main__':
parser = argparse.ArgumentParser("SAM-DETR", parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)