-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhier_voice_conversion.py
354 lines (308 loc) · 14.3 KB
/
hier_voice_conversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from speechgpt_gen_preceptual import HierarchicalConditionalFlowMatcher
import torch
import torchaudio
from einops import rearrange
import os
import random
from tqdm import tqdm
import yaml
import joblib
import fairseq
import torch.nn.functional as F
import numpy as np
from torchaudio.functional import resample
import shutil
import dac
import argparse
class FeatureReader(object):
def __init__(self, ckpt_path, layer, max_chunk=1600000, fp16=False, sampling_rate=16000, device='cpu'):
(
model,
cfg,
task,
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
self.device = device
self.model = model[0].eval().to(self.device)
self.task = task
self.layer = layer
self.max_chunk = max_chunk
self.fp16 = fp16
if fp16:
self.model.half()
self.layer_shift = 0
self.target_sample_hz = sampling_rate
# logger.info(f"TASK CONFIG:\n{self.task.cfg}")
def to(self, device):
self.device = device
self.model = self.model.to(device)
return self
def read_audio(self, path):
wav, sr = torchaudio.load(path)
if sr != self.target_sample_hz:
wav = resample(wav, sr, self.target_sample_hz)
return wav
@torch.no_grad()
def get_feats(self, waveform):
x = waveform
with torch.no_grad():
if self.fp16:
x = x.half().to(self.device)
else:
x = x.float().to(self.device)
if self.task.cfg.normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start: start + self.max_chunk]
feat_chunk, _ = self.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
output_layer=self.layer + self.layer_shift,
)
feat.append(feat_chunk)
if len(feat) == 0:
return torch.zeros(0, 0)
return torch.cat(feat, 1).squeeze(0)
class ApplyKmeans(object):
def __init__(self, km_path, device='cpu'):
self.km_model = joblib.load(km_path)
self.C_np = self.km_model.cluster_centers_.transpose()
self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True)
self.C = torch.from_numpy(self.C_np)
self.Cnorm = torch.from_numpy(self.Cnorm_np)
self.device = device
if self.device != 'cpu':
self.C = self.C.to(device)
self.Cnorm = self.Cnorm.to(device)
def to(self, device):
self.device = device
self.C = self.C.to(device)
self.Cnorm = self.Cnorm.to(device)
return self
def __call__(self, x):
if isinstance(x, torch.Tensor):
self.C = self.C.to(x)
self.Cnorm = self.Cnorm.to(x)
dist = (
x.pow(2).sum(1, keepdim=True)
- 2 * torch.matmul(x, self.C)
+ self.Cnorm
)
return dist.argmin(dim=1).cpu().numpy()
else:
dist = (
(x ** 2).sum(1, keepdims=True)
- 2 * np.matmul(x, self.C_np)
+ self.Cnorm_np
)
return np.argmin(dist, axis=1)
class Speech2Unit(torch.nn.Module):
def __init__(
self,
ckpt_dir,
layer=9,
max_chunk=1600000,
fp16=False,
sampling_rate=16000,
device='cpu'):
"""
Args:
ckpt_dir(str): path to hubert model dir(e.g. hubert_base_ls960.pt)
layer(int): feat from which layer of hubert models defauly by 9
max_chunk(int): default by 1600000
fp16(bool): default by False
sampling_rate(int): sampling_rate default by 16000
"""
super().__init__()
ckpt_path = os.path.join(ckpt_dir, "hubert_base_ls960.pt")
km_path = os.path.join(ckpt_dir, "hubert_base_ls960_L9_km500.bin")
self.feature_reader = FeatureReader(ckpt_path, layer, max_chunk, fp16, sampling_rate, device=device)
self.apply_kmeans = ApplyKmeans(km_path, device=device)
self.device= device
def to(self, device):
self.device = device
self.feature_reader.to(device)
self.apply_kmeans.to(device)
return self
@staticmethod
def merge_duplicates(cluster_ids):
dup_cluster_list = []
duration_list = []
count = 1
for i in range(0, len(cluster_ids)):
if i + 1 < len(cluster_ids) and cluster_ids[i] == cluster_ids[i+1]:
count += 1
else:
dup_cluster_list.append(cluster_ids[i])
duration_list.append(count)
count = 1
return dup_cluster_list, duration_list
def __call__(self, path, merged=False):
waveform = self.feature_reader.read_audio(path).to(device)
feat = self.feature_reader.get_feats(waveform)
cluster_ids = self.apply_kmeans(feat)
# merged_units = "<sosp>" + "".join([f"<{str(x)}>" for x in dup_cluster_list]) + "<eosp>"
# unmerged_units = "<sosp>" + "".join([f"<{str(x)}>" for x in cluster_ids]) + "<eosp>"
if not merged:
return cluster_ids
else:
dup_cluster_list, duration_list = self.merge_duplicates(cluster_ids)
return dup_cluster_list
class DACWrapper(torch.nn.Module):
def __init__(self, ckpt_path) -> None:
super().__init__()
self.model = dac.DAC.load(ckpt_path)
self.downsample_rate = self.model.hop_length
self.sample_rate = self.model.sample_rate
@torch.inference_mode
def encode(self, wav, return_code=False):
wav = self.model.preprocess(wav, self.sample_rate)
z, codes, latents, _, _ = self.model.encode(wav)
if return_code:
return codes
else:
return rearrange(z, 'b d t -> b t d')
@torch.inference_mode
def decode(self, z):
return self.model.decode(z)
class VoiceConversion:
def __init__(self,
tokenizer,
model: HierarchicalConditionalMatcher,
semantic_tokenizer: Speech2Unit,
device='cpu',
explicit=False):
self.tokenizer = tokenizer.to(device)
self.tokenizer.eval()
self.model = model.to(device)
self.model.eval()
self.semantic_tokenizer = semantic_tokenizer.to(device)
self.semantic_tokenizer.eval()
self.device = device
self.explicit = explicit
@torch.no_grad()
def semantic_encode(self, wav_file):
tokens = self.semantic_tokenizer(wav_file)
tokens = torch.from_numpy(tokens).to(self.device)
return tokens
@torch.no_grad()
def encode(self, wav_file, target_file=None, target_length=None):
wav, sr = torchaudio.load(wav_file)
if sr != self.tokenizer.sample_rate:
wav = torchaudio.functional.resample(wav, sr , self.tokenizer.sample_rate)
if target_file is not None:
if target_length is not None:
torchaudio.save(target_file, wav[:, :target_length], self.tokenizer.sample_rate)
else:
torchaudio.save(target_file, wav, self.tokenizer.sample_rate)
wav = wav.to(self.device)
rep = self.tokenizer.encode(wav.unsqueeze(0))
return rep
@torch.no_grad()
def decode(self, file, rep):
wav = self.tokenizer.decode(rearrange(rep, 'b t d -> b d t'))
torchaudio.save(file, wav.squeeze(0).cpu().detach(), self.tokenizer.sample_rate)
@torch.no_grad()
def generate(self, prompt_file, src_file, tgt_dir, max_prompt_token_length=150, steps=[8]):
if not os.path.exists(tgt_dir):
os.makedirs(tgt_dir)
src_rep = self.encode(src_file)
self.decode(f'{tgt_dir}/raw.wav', src_rep)
semantic_tokens = self.semantic_encode(src_file).unsqueeze(0)
prompt_rep = self.encode(prompt_file, target_file=f'{tgt_dir}/prompt_o.wav', target_length=max_prompt_token_length * self.tokenizer.downsample_rate)[:, :max_prompt_token_length]
prompt_semantic_tokens = self.semantic_encode(prompt_file)[:max_prompt_token_length].unsqueeze(0)
prompt_rep = prompt_rep[:, :prompt_semantic_tokens.size(-1)]
self.decode(f'{tgt_dir}/prompt_r.wav', prompt_rep)
# if self.explicit:
# prompt_rep = self.encode(prompt_file, st=1)[:, :max_prompt_token_length]
for step in steps:
# generated = self.model.generate(semantic_emb=src_rep,
# steps = step)
# self.decode(f'{tgt_dir}/unconditonal_{step}.wav', generated + src_rep if self.explicit else generated)
generated = self.model.generate(semantic_tokens=semantic_tokens,
context=prompt_rep,
context_semantic_tokens=prompt_semantic_tokens,
steps = step)
self.decode(f'{tgt_dir}/generate_{step}.wav', generated + src_rep if self.explicit else generated)
def search_file(file_list, file_prefix):
for filename in file_list:
if filename.startswith(file_prefix):
return filename
return False
if __name__ == '__main__':
ckpt_dir = '/remote-home/xzhang/SpeechGPT-Gen-Flow-Matcher/Log/hier/hubert_dac'
dev_set = 'vctk'
with open(f'{ckpt_dir}/config.yml') as f:
cfg = yaml.safe_load(f)
semantic_tokenizer = Speech2Unit('/remote-home/xzhang/audiolm/hubert_kmeans/checkpoints')
st_ckpt = cfg['trainer_args'].get('speechtokenizer_ckpt')
tokenizer = DACWrapper(st_ckpt)
# cnf_model = HierarchicalConditionalMatcher(cfg=cfg['model_args'])
# cnf_model.load(f'{ckpt_dir}/HierarchicalConditionalFlowMatcher_best_dev.pt')
cnf_model = HierarchicalConditionalFlowMatcher.from_pretrained(ckpt_dir)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
vc = VoiceConversion(tokenizer=tokenizer,
model=cnf_model,
semantic_tokenizer=semantic_tokenizer,
device=device,
explicit=cfg['model_args'].get("explicit", False))
if dev_set == 'librispeech':
root_dir = '/remote-home/share/data/SpeechPretrain/LibriSpeech/LibriSpeech/dev-clean'
prompt_dir = '/remote-home/share/data/SpeechPretrain/LibriSpeech/LibriSpeech/dev-clean'
elif dev_set == 'vctk':
root_dir = '/remote-home/share/data/SpeechPretrain/VCTK/wav48_silence_trimmed'
prompt_dir = '/remote-home/share/data/SpeechPretrain/VCTK/wav48_silence_trimmed'
if dev_set == 'cross_lingual':
root_dir = '/remote-home/share/data/SpeechPretrain/LibriSpeech/LibriSpeech/dev-clean'
prompt_dir = '/remote-home/share/data/SpeechPretrain/AIShell-2/data/wav'
text_dir = '/remote-home/share/data/SpeechPretrain/VCTK/txt'
prompt_speakers_all = [folder for folder in os.listdir(prompt_dir if 'vctk' not in root_dir.lower() else text_dir) if '.txt' not in folder]
speakers = [folder for folder in os.listdir(root_dir if 'vctk' not in root_dir.lower() else text_dir) if '.txt' not in folder]
if 'librispeech' not in root_dir.lower():
file_dict = {speaker: os.listdir(f'{root_dir}/{speaker}') for speaker in speakers}
else:
file_dict = {speaker:[f'{chapter}/{file}' for chapter in os.listdir(f'{root_dir}/{speaker}') for file in os.listdir(f'{root_dir}/{speaker}/{chapter}') if '.txt' not in file] for speaker in speakers}
prompt_file_dict = {speaker: os.listdir(f'{prompt_dir}/{speaker}') for speaker in prompt_speakers_all} if 'librispeech' != dev_set else file_dict
tgt_root = f'./voice_conversion_with_gt/{dev_set}/hier/hubert_dac_final'
k = 20
random.seed(0)
prompt_speakers = random.sample(prompt_speakers_all, k)
src_speakers = random.sample(speakers, k)
for prompt_speaker, src_speaker in tqdm(zip(prompt_speakers, src_speakers)):
for i in range(2):
while src_speaker == prompt_speaker:
src_speaker = random.choice(speakers)
if 'VCTK' in root_dir:
src_files = [x for x in file_dict[src_speaker] if int(x.split('_')[1]) < 14]
prompt_files = [x for x in prompt_file_dict[prompt_speaker] if int(x.split('_')[1]) > 14]
else:
src_files = file_dict[src_speaker]
prompt_files = prompt_file_dict[prompt_speaker]
src_file = random.choice(src_files)
prompt_file = random.choice(prompt_files)
tgt_dir = f'{tgt_root}/{prompt_speaker}_{src_speaker}_{i}'
if not os.path.exists(tgt_dir):
os.makedirs(tgt_dir)
if 'vctk' in root_dir.lower():
src_text_file = '_'.join(src_file.split('.')[0].split('_')[:2]) +'.txt'
shutil.copy(f'{text_dir}/{src_speaker}/{src_text_file}', f'{tgt_dir}/text.txt')
tgt_gt = '_'.join(src_file.replace(src_speaker, prompt_speaker).split('_')[:2])
tgt_gt = search_file(file_list=prompt_file_dict[prompt_speaker], file_prefix=tgt_gt)
if not tgt_gt:
shutil.rmtree(tgt_dir)
continue
else:
tgt_gt_rep = vc.encode(f'{prompt_dir}/{prompt_speaker}/{tgt_gt}')
vc.decode(f'{tgt_dir}/gt.wav', tgt_gt_rep)
elif 'librispeech' in root_dir.lower():
spk, chapter, idx = src_file.split('/')[-1].split('.')[0].split('-')
with open(f'{tgt_dir}/text.txt', 'w+') as out_f:
with open(f'{root_dir}/{src_speaker}/{chapter}/{src_speaker}-{chapter}.trans.txt', 'r') as in_f:
out_f.write(in_f.readlines()[int(idx)])
vc.generate(prompt_file=f'{prompt_dir}/{prompt_speaker}/{prompt_file}',
src_file=f'{root_dir}/{src_speaker}/{src_file}',
tgt_dir=tgt_dir,
steps=[4, 8, 16, 32, 64, 128, 256, 512, 1024]
)