-
Notifications
You must be signed in to change notification settings - Fork 2
/
ddq_300q_4scale_1x_r50.py
182 lines (171 loc) · 5.93 KB
/
ddq_300q_4scale_1x_r50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
_base_ = [
'./_base_/datasets/data_re_aug_coco_detection.py',
'./_base_/default_runtime.py'
]
randomness=dict(seed=681328528)
model = dict(
type='HPRDDQDETR',
num_queries=300, # num_matching_queries
aux_weights=[0.5,0.5],
# ratio of num_dense queries to num_queries
dense_topk_ratio=1.5,
with_box_refine=True,
as_two_stage=True,
data_preprocessor=dict(
type='MultiBranchDataPreprocessor',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=1)),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='backbone_pth/backbone.pt')),
neck=dict(
type='ChannelMapper',
in_channels=[512, 1024, 2048],
kernel_size=1,
out_channels=256,
act_cfg=None,
norm_cfg=dict(type='GN', num_groups=32),
num_outs=4),
encoder=dict(
num_layers=6,
num_cp=6,
layer_cfg=dict(
self_attn_cfg=dict(embed_dims=256, num_levels=4,
dropout=0.0), # 0.1 for DeformDETR
ffn_cfg=dict(
embed_dims=256,
feedforward_channels=2048, # 1024 for DeformDETR
ffn_drop=0.0))), # 0.1 for DeformDETR
decoder=dict(
num_layers=6,
return_intermediate=True,
bbox_roi_extractor = dict(
type='SingleRoIExtractor',
finest_scale=56,
roi_layer=dict(
type='RoIAlign', output_size=7, sampling_ratio=2),
out_channels=256,
featmap_strides=[8, 16, 32, 64]),
layer_cfg=dict(
merge_method='learnable_channel_aware',
initial_weights=[1,1,1],
merge_dropout=0.,# only be used when method='cross_attn'
dy_conv_cfg=dict(
in_channels=256,
feat_channels=64,
out_channels=256,
input_feat_shape=7,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')), # 0.1 for DeformDETR
regional_ca_cfg=dict(
sample_num=5,
embed_dims=256,
num_heads=8,
use_key_pos=True,
positional_encoding=dict(
num_feats=128,
normalize=True,
offset=0.0, # -0.5 for DeformDETR
temperature=20),
attn_drop=0.,
proj_drop=0.,
dropout_layer=dict(type='Dropout', drop_prob=0.),
init_cfg=None,
batch_first=True,
norm_cfg=dict(type='LN'),
act_cfg = dict(type='ReLU', inplace=True),), # 0.1 for DeformDETR
self_attn_cfg=dict(embed_dims=256, num_heads=8,
dropout=0.0), # 0.1 for DeformDETR
cross_attn_cfg=dict(embed_dims=256, num_levels=4,
dropout=0.0), # 0.1 for DeformDETR
ffn_cfg=dict(
embed_dims=256,
feedforward_channels=2048, # 1024 for DeformDETR
ffn_drop=0.0)), # 0.1 for DeformDETR
post_norm_cfg=None),
positional_encoding=dict(
num_feats=128,
normalize=True,
offset=0.0, # -0.5 for DeformDETR
temperature=20), # 10000 for DeformDETR
bbox_head=dict(
type='HPRDDQDETRHead',
num_classes=80,
sync_cls_avg_factor=True,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
dn_cfg=dict(
label_noise_scale=0.5,
box_noise_scale=1.0,
group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)),
dqs_cfg=dict(type='nms', iou_threshold=0.8),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='HungarianAssigner',
match_costs=[
dict(type='FocalLossCost', weight=2.0),
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
])),
test_cfg=dict(max_per_img=300))
train_dataloader = dict(
batch_size=2) # (8 GPUs) x (2 samples per GPU)
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.05),
clip_grad=dict(max_norm=0.1, norm_type=2),
paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)}))
# learning policy
max_iters = 88000*1 # 88000/(118287-coco train set/(16-bs))≈12ep
train_cfg = dict(
type='IterBasedTrainLoop',
max_iters=max_iters,
val_interval=8000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
log_processor = dict(by_epoch=False)
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=False,
begin=0,
end=2000),
dict(
type='MultiStepLR',
begin=0,
end=max_iters,
by_epoch=False,
milestones=[80000],
gamma=0.1)
]
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=8000))
vis_backends = [dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend')]
visualizer = dict(
type='DetLocalVisualizer',
vis_backends=vis_backends,
name='visualizer')
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (2 samples per GPU)
auto_scale_lr = dict(base_batch_size=16)