-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_sim.py
196 lines (167 loc) · 8.97 KB
/
run_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import os
import torch
from exp.exp_main_sim import Exp_Main_Sim
from exp.exp_main_markov import Exp_Main_Markov
from exp.exp_main_toy_example import Exp_Main_Toy
from utils.simulation import simulate_main
import random
import numpy as np
from utils.tools import set_random_seed
def main():
#fix_seed = 714
#random.seed(fix_seed)
#torch.manual_seed(fix_seed)
#np.random.seed(fix_seed)
set_random_seed(714)
parser = argparse.ArgumentParser(description='Informer for Time Series Simulation')
# basic config
parser.add_argument('--is_training', type=int, required=True, default=0, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--example_name', type=str, required=True, default='Toy_Wind',
help='example name')
# data loader
parser.add_argument('--root_path', type=str, default='../data/', help='data directory')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='../checkpoints/', help='location of model checkpoints')
parser.add_argument('--state_init_root_path', type=str, default='../data/wind_data_state_sim_300.pt', help='directory for state init')
parser.add_argument('--amount_init_root_path', type=str, default='../data/wind_data_amount_sim.pt', help='directory for amount init')
parser.add_argument('--time_init_root_path', type=str, default='../data/wind_data_time_sim.pt', help='directory for time init')
# inference task
parser.add_argument('--seq_len_markov', type=int, default=12, help='Markov p')
parser.add_argument('--seq_len', type=int, default=48, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=48, help='prediction sequence length')
# model definition
parser.add_argument('--num_grps', type=int, default=300, help='number of discrete states')
parser.add_argument('--tail_pct', type=float, default=1/3, help='percentage of states in tail')
parser.add_argument('--tail_factor_state', type=float, default=1.2, help='amplification factor for states in tail')
parser.add_argument('--enc_in', type=int, default=6, help='encoder input size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers_markov', type=int, default=3, help='num of encoder layers in Markov model')
parser.add_argument('--e_layers', type=int, default=4, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=4, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--factor', type=int, default=7, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in encoder')
# optimization
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--train_epochs', type=int, default=20, help='train epochs')
parser.add_argument('--batch_size', type=int, default=256, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='exp', help='exp description')
parser.add_argument('--lradj', type=str, default='type2', help='adjust learning rate')
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
args.dec_in = args.enc_in
args.c_out = args.enc_in
print('Args in experiment:')
print(args)
exp = Exp_Main_Sim(args) if args.example_name == 'Toy_Wind' else Exp_Main_Toy(args)
exp_markov = Exp_Main_Markov(args)
if args.is_training:
# train Markov sequence generator and deep learning model
# setting record of experiments
setting_markov = '{}_{}_{}_ng{}_sl{}_dm{}_nh{}_el{}_df{}_fc{}_dt{}_{}'.format(
args.model_id,
'Markov',
args.example_name,
args.num_grps,
args.seq_len_markov,
args.d_model,
args.n_heads,
args.e_layers_markov,
args.d_ff,
args.factor,
args.des, 0)
print('>>>>>>>start training for Markov sequence generator model: {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting_markov))
exp_markov.train(setting_markov)
torch.cuda.empty_cache()
# setting record of experiments
setting = '{}_{}_{}_ng{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_dt{}_{}'.format(
args.model_id,
'Informer',
args.example_name,
args.num_grps,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.des, 0)
print('>>>>>>>start training for deep learning model: {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
torch.cuda.empty_cache()
else:
# load trained models to perform simulation
setting_markov = '{}_{}_{}_ng{}_sl{}_dm{}_nh{}_el{}_df{}_fc{}_dt{}_{}'.format(
args.model_id,
'Markov',
args.example_name,
args.num_grps,
args.seq_len_markov,
args.d_model,
args.n_heads,
args.e_layers_markov,
args.d_ff,
args.factor,
args.des, 0)
setting = '{}_{}_{}_ng{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_dt{}_{}'.format(
args.model_id,
'Informer',
args.example_name,
args.num_grps,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.des, 0)
state_dict_path = os.path.join(args.checkpoints, setting_markov, 'checkpoint.pth')
amount_dict_path = os.path.join(args.checkpoints, setting, 'checkpoint.pth')
if args.use_gpu == True:
exp.model.load_state_dict(torch.load(amount_dict_path))
exp_markov.model.load_state_dict(torch.load(state_dict_path))
else:
exp.model.load_state_dict(torch.load(amount_dict_path, map_location=torch.device('cpu')))
exp_markov.model.load_state_dict(torch.load(state_dict_path, map_location=torch.device('cpu')))
print('>>>>>>>simulation : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
state = torch.load(args.state_init_root_path)
amount = torch.load(args.amount_init_root_path)
time = torch.load(args.time_init_root_path)
state_sim, amount_Dl, amount_Chol, amount_Rshfl = simulate_main(exp, exp_markov, state, amount, time)
torch.save(state_sim, os.path.join(args.root_path, 'state_sim_'+setting+'.pt'))
torch.save(amount_Dl, os.path.join(args.root_path, 'amount_Dl_'+setting+'.pt'))
torch.save(amount_Chol, os.path.join(args.root_path, 'amount_Chol_'+setting+'.pt'))
torch.save(amount_Rshfl, os.path.join(args.root_path, 'amount_Rshfl_'+setting+'.pt'))
torch.cuda.empty_cache()
if __name__ == "__main__":
main()