-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_mm.py
545 lines (419 loc) · 23.5 KB
/
train_mm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
""" Code for paper: A Modulation Module for Multi-task Learning with Applications in Image Retrieval: https://arxiv.org/abs/1807.06708
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import os.path
import time
import sys
import tensorflow as tf
import numpy as np
import importlib
import itertools
import argparse
import facenet
import cv2
import random
import pdb
import h5py
import math
def main(args):
# import network
network = importlib.import_module(args.model_def)
subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') + args.experiment_name
log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist
os.makedirs(log_dir)
model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist
os.makedirs(model_dir)
np.random.seed(seed=args.seed)
class_name = ['smile','oval_face','5_ocloc_shadow','bald','archied_eyebrows','big_lips', 'big_Nose']
class_num = len(class_name)
class_index = [31,25,0,4,1,6,7]
all_image_list = []
all_label_list = []
for i in range(class_num):
image_list = []
label_list = []
train_set = facenet.get_sub_category_dataset(args.data_dir, class_index[i])
image_list_p, label_list_p = facenet.get_image_paths_and_labels_triplet(train_set[0], args)
image_list_n, label_list_n = facenet.get_image_paths_and_labels_triplet(train_set[1], args)
image_list.append(image_list_p)
image_list.append(image_list_n)
label_list.append(label_list_p)
label_list.append(label_list_n)
all_image_list.append(image_list)
all_label_list.append(label_list)
print('Model directory: %s' % model_dir)
print('Log directory: %s' % log_dir)
if args.pretrained_model:
print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model))
image_size = args.image_size
batch_size = args.batch_size
with tf.Graph().as_default():
tf.set_random_seed(args.seed)
global_step = tf.Variable(0, trainable=False)
# Placeholder for the learning rate
learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
image_placeholder = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size,3), name='images')
labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size,3), name='labels')
code_placeholder = tf.placeholder(tf.float32, shape=(batch_size,class_num,1,1), name='code')
image_batch = normalized_image(image_placeholder)
code_batch = code_placeholder
control_code = tf.tile(code_placeholder,[1,1,args.embedding_size,1])
mask_array = np.ones((1 ,class_num,args.embedding_size,1),np.float32)
# for i in range(class_num):
# mask_array[:,i,(args.embedding_size/class_num)*i:(args.embedding_size/class_num)*(i+1)] = 1
mask_tensor = tf.get_variable('mask', dtype=tf.float32, trainable=args.learned_mask, initializer=tf.constant(mask_array))
mask_tensor = tf.tile(mask_tensor,[batch_size,1,1,1])
control_code = tf.tile(code_placeholder,[1,1,args.embedding_size,1])
mask_out = tf.multiply(mask_tensor, control_code)
mask_out = tf.reduce_sum(mask_out,axis=1)
mask_out = tf.squeeze(mask_out)
mask_out = tf.nn.relu(mask_out)
mask0_array = np.ones((1, class_num, 128, 1), np.float32)
mask0_tensor = tf.get_variable('mask0', dtype=tf.float32, trainable=args.learned_mask,
initializer=tf.constant(mask0_array))
mask0_tensor = tf.tile(mask0_tensor, [batch_size, 1, 1, 1])
control0_code = tf.tile(code_placeholder,[1,1,128,1])
mask0_out = tf.multiply(mask0_tensor, control0_code)
mask0_out = tf.reduce_sum(mask0_out, axis=1)
mask0_out = tf.squeeze(mask0_out)
mask0_out = tf.nn.relu(mask0_out)
mask0_out = tf.expand_dims(mask0_out,1)
mask0_out = tf.expand_dims(mask0_out,1)
mask1_array = np.ones((1, class_num, 128, 1), np.float32)
mask1_tensor = tf.get_variable('mask1', dtype=tf.float32, trainable=args.learned_mask,
initializer=tf.constant(mask1_array))
mask1_tensor = tf.tile(mask1_tensor, [batch_size, 1, 1, 1])
control1_code = tf.tile(code_placeholder,[1,1,128,1])
mask1_out = tf.multiply(mask1_tensor, control1_code)
mask1_out = tf.reduce_sum(mask1_out, axis=1)
mask1_out = tf.squeeze(mask1_out)
mask1_out = tf.nn.relu(mask1_out)
mask1_out = tf.expand_dims(mask1_out,1)
mask1_out = tf.expand_dims(mask1_out,1)
# Build the inference graph
prelogits, _ = network.inference(image_batch, mask0_out, mask1_out, args.keep_probability,
phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size,
weight_decay=args.weight_decay)
embeddings_pre = tf.multiply(mask_out, prelogits)
embeddings = tf.nn.l2_normalize(embeddings_pre, 1, 1e-10, name='embeddings')
anchor_index = list(range(0,batch_size,3))
positive_index = list(range(1,batch_size,3))
negative_index = list(range(2,batch_size,3))
a_indice = tf.constant(np.array(anchor_index))
p_indice = tf.constant(np.array(positive_index))
n_indice = tf.constant(np.array(negative_index))
anchor = tf.gather(embeddings,a_indice)
positive = tf.gather(embeddings,p_indice)
negative = tf.gather(embeddings,n_indice)
triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha)
learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
# Calculate the total losses
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')
# Build a Graph that trains the model with one batch of examples and updates the model parameters
train_op = facenet.train(total_loss, global_step, args.optimizer,
learning_rate, args.moving_average_decay, tf.global_variables())
# Create a saver
trainable_variables = tf.global_variables()
saver = tf.train.Saver(trainable_variables, max_to_keep=35)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
# Start running operations on the Graph.
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# Initialize variables
sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True})
sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True})
summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord, sess=sess)
with sess.as_default():
if args.pretrained_model:
print('Restoring pretrained model: %s' % args.pretrained_model)
saver.restore(sess, os.path.expanduser(args.pretrained_model))
# Training and validation loop
epoch = 0
Accuracy = [0]
while epoch < args.max_nrof_epochs:
step = sess.run(global_step, feed_dict=None)
# epoch = step // args.epoch_size
# Train for one epoch
code_list = []
triplets_list = []
max_num = 32768
if (epoch+1)%args.lr_epoch == 0:
args.learning_rate = 0.1*args.learning_rate
if args.random_trip:
for i in range(class_num):
code = np.zeros((batch_size, class_num, 1, 1), np.float32)
_class = i
code[:, _class, :, :] = 1
Triplets = triplet_random(args, sess, all_image_list[i], all_image_list, epoch, image_placeholder,
batch_size_placeholder, learning_rate_placeholder,
phase_train_placeholder, global_step,
embeddings, total_loss, train_op, summary_op, summary_writer,
args.embedding_size, anchor, positive, negative, triplet_loss, max_num)
triplets_list.append(Triplets)
code_list.append(code)
train(args, sess, image_list, epoch, image_placeholder, code_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step,
embeddings, total_loss, train_op, summary_op, summary_writer,
args.embedding_size, anchor, positive, negative, triplet_loss, triplets_list, code_list, model_dir, Accuracy)
if (epoch+1)%2 == 0:
Accuracy = test(args, sess, image_list, epoch, image_placeholder,code_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step,
embeddings, total_loss, train_op, summary_op, summary_writer,
args.embedding_size, anchor, positive, negative, triplet_loss, triplets_list, Accuracy)
# Save variables and the metagraph if it doesn't exist already
model_name = 'epoch' + str(epoch+1)
print(model_dir)
if (epoch+1) > 0 :
if (epoch +1)%2 == 0:
save_variables_and_metagraph(sess, saver, summary_writer, model_dir, model_name, step)
print('models are saved in ', os.path.join(model_dir, model_name))
epoch = epoch + 1
sess.close()
return model_dir
def normalized_image(img_sym, resnet_mean = [102.9801, 115.9465, 122.7717]):
return tf.scalar_mul(0.0078125, tf.subtract(tf.cast(img_sym, tf.float32), tf.constant(resnet_mean)))
def triplet_random(args, sess, dataset, image_list, epoch, image_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step,
embeddings, loss, train_op, summary_op, summary_writer,
embedding_size, anchor, positive, negative, triplet_loss,max_num):
batch_number = 0
images_data = h5py.File('./data/train_classification.h5')
images = images_data['data']
image_list_p = dataset[0]
image_list_n = dataset[1]
random.shuffle(image_list_n)
start_time = time.time()
nrof_examples = len(image_list_p)
triplets = []
nrof_neg = len(image_list_n)
for j in range(nrof_examples):
i = j
a_idx = i
p_idx = np.random.randint(i,nrof_examples)
n_idx = np.random.randint(nrof_neg)
triplets.append((image_list_p[a_idx], image_list_p[p_idx], image_list_n[n_idx]))
return triplets
def train(args, sess, dataset, epoch, image_placeholder, code_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step,
embeddings, loss, train_op, summary_op, summary_writer,
embedding_size, anchor, positive, negative, triplet_loss, triplets_list, code_list,model_dir,Accuracy):
batch_number = 0
images_data = h5py.File('./data/train_classification.h5')
images = images_data['data']
lr = args.learning_rate
start_time = time.time()
# sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array})
nrof_examples = 0
class_num = len(triplets_list)
# for i in range(class_num):
nrof_examples = max(len(triplets_list[0]), nrof_examples)
nrof_batches = int(np.ceil(nrof_examples / (args.batch_size/3/class_num)))
print('load mean image done!')
train_time = 0
batch_number = 0
batch_size = args.batch_size
# emb_array = np.zeros((nrof_examples, embedding_size))
# loss_array = np.zeros((nrof_triplets,))
while batch_number < nrof_batches:
start_time = time.time()
class_num = len(triplets_list)
image_array = np.zeros((batch_size,150,150,3),np.float32)
code_array = np.zeros((0,class_num,1,1), np.float32)
length = []
for t in range(class_num):
triplets = triplets_list[t]
length.append(len(triplets))
start_index = t*int(batch_size/class_num)
image_array = facenet.get_triplet_image_batch1(images, triplets, batch_size/class_num, batch_number, image_array, start_index, args)
code = code_list[t]
code_array_tem = code[0:int(batch_size/class_num)]
code_array = np.vstack((code_array, code_array_tem))
time1 = time.time() - start_time
feed_dict = {batch_size_placeholder: batch_size, learning_rate_placeholder: lr, phase_train_placeholder: True, image_placeholder: image_array, code_placeholder: code_array}
err, _, step, emb = sess.run([loss, train_op, global_step, embeddings], feed_dict=feed_dict)
# emb_array[lab,:] = emb
# loss_array[i] = err
emb_feature = emb
nrof_pair = emb_feature.shape[0]/3
correct_num = 0
for pair_index in range(0, int(nrof_pair/class_num)):
anchor_index = pair_index*3
pos_index = anchor_index + 1
neg_index = anchor_index + 2
an_feature = emb_feature[anchor_index,:]
pos_feature = emb_feature[pos_index, :]
neg_feature = emb_feature[neg_index, :]
if np.sum(np.square(an_feature - pos_feature),0) < np.sum(np.square(an_feature - neg_feature),0):
correct_num = correct_num + 1
p_dist = np.sum(np.square(an_feature - pos_feature), 0)
n_dist = np.sum(np.square(an_feature - neg_feature),0)
print('triplet number:', length)
print('pos_distance and neg_distance', p_dist, n_dist, 'model_dir:',model_dir,'last accuracy:',Accuracy[-1])
accuracy = correct_num/(nrof_pair/class_num)
duration = time.time() - start_time
print('Epoch: [%d][%d/%d]\tTime %.3f\tread_time %.3f\tAccuracy %2.3f\tlr %2.3f\tLoss %2.3f' %
(epoch, batch_number+1, nrof_batches, duration, time1, accuracy, lr, err))
batch_number += 1
train_time += duration
# Add validation loss and accuracy to summary
summary = tf.Summary()
#pylint: disable=maybe-no-member
#summary.value.add(tag='time/selection', simple_value=train_time)
summary_writer.add_summary(summary, step)
return step
def get_code_batch(code, triplets, batch_size, batch_index):
nrof_examples = len(triplets)
j = batch_index * batch_size % nrof_examples
if j + batch_size < nrof_examples:
code_array = code[j: j+ batch_size]
else:
code_array1 = code[j:nrof_examples]
code_array2 = code[0:batch_size - (nrof_examples-j)]
code_array = np.vstack((code_array1,code_array2))
return code_array
def test(args, sess, dataset, epoch, image_placeholder, code_placeholder,
batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step,
embeddings, loss, train_op, summary_op, summary_writer, learning_rate_schedule_file,
embedding_size, anchor, positive, negative, triplet_loss, triplet_list, Accuracy):
images_data = h5py.File('../data/test_triplet_smile.h5')
images_a = images_data['anchors']
images_p = images_data['positive']
images_n = images_data['negative']
nrof_images = images_a.shape[0]
nrof_batches = int(math.ceil(1.0 * nrof_images / (args.batch_size/3)))
batch_number = 0
correct_num = 0
class_num = len(triplet_list)
batch_size = args.batch_size
print('load mean image done!')
# fail_dir = '../fail_smile_pair'
code = np.zeros((batch_size, class_num, 1, 1), np.float32)
_class = 0
if _class > 3:
_class = 3
code[:, _class, :, :] = 1
check = 0
while batch_number < nrof_batches:
# batch_size = min(nrof_images - batch_number * args.batch_size, args.batch_size)
batch_inter = int(batch_size/3)
if (nrof_images - batch_number*batch_inter) < batch_inter:
check = check + 1
anchor_array1 = images_a[batch_number * batch_inter:nrof_images]
anchor_array2 = images_a[0:batch_inter - (nrof_images - batch_number * batch_inter)]
anchor_array = np.vstack((anchor_array1,anchor_array2))
positive_array1 = images_p[batch_number * batch_inter:nrof_images]
positive_array2 = images_p[0:batch_inter - (nrof_images - batch_number * batch_inter)]
positive_array = np.vstack((positive_array1, positive_array2))
negative_array1 = images_n[batch_number * batch_inter:nrof_images]
negative_array2 = images_n[0:batch_inter - (nrof_images - batch_number * batch_inter)]
negative_array = np.vstack((negative_array1, negative_array2))
else:
anchor_array = images_a[batch_number*batch_inter:batch_number*batch_inter + batch_inter]
positive_array = images_p[batch_number * batch_inter:batch_number * batch_inter + batch_inter]
negative_array = images_n[batch_number * batch_inter:batch_number * batch_inter + batch_inter]
image_array = np.vstack((anchor_array,positive_array,negative_array))
feed_dict = {batch_size_placeholder: batch_size, phase_train_placeholder: False, image_placeholder: image_array, code_placeholder: code}
emb = sess.run(embeddings, feed_dict=feed_dict)
batch_number += 1
# emb_array[lab,:] = emb
# loss_array[i] = er
for i in range(int(batch_size/3)):
an_feature = emb[i,:]
pos_feature = emb[i+int(batch_size/3), :]
neg_feature = emb[i+2*int(batch_size/3), :]
if np.sum(np.square(an_feature - pos_feature),0) < np.sum(np.square(an_feature - neg_feature),0):
correct_num = correct_num + 1
nrof_images = nrof_batches*batch_inter
accuracy = correct_num/nrof_images
Accuracy.append(accuracy)
print('accuracy:', Accuracy)
return Accuracy
def save_variables_and_metagraph(sess, saver, summary_writer, model_dir, model_name, step):
# Save the model checkpoint
print('Saving variables')
start_time = time.time()
checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name)
saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False)
save_time_variables = time.time() - start_time
print('Variables saved in %.2f seconds' % save_time_variables)
metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name)
save_time_metagraph = 0
if not os.path.exists(metagraph_filename):
print('Saving metagraph')
start_time = time.time()
saver.export_meta_graph(metagraph_filename)
save_time_metagraph = time.time() - start_time
print('Metagraph saved in %.2f seconds' % save_time_metagraph)
summary = tf.Summary()
#pylint: disable=maybe-no-member
summary.value.add(tag='time/save_variables', simple_value=save_time_variables)
summary.value.add(tag='time/save_metagraph', simple_value=save_time_metagraph)
summary_writer.add_summary(summary, step)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--is_training', type=bool,default= True)
parser.add_argument('--lr_epoch', type=int,default= 30)
parser.add_argument('--random_trip', type=bool, default= False)
parser.add_argument('--experiment_name', type=str,default='triplet')
parser.add_argument('--category', type=int, default=31)
parser.add_argument('--learned_mask', type=bool, default=True)
parser.add_argument('--logs_base_dir', type=str,
help='Directory where to write event logs.', default='~/logs/facenet')
parser.add_argument('--models_base_dir', type=str,
help='Directory where to write trained models and checkpoints.', default='~/models/facenet')
parser.add_argument('--gpu_memory_fraction', type=float,
help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0)
parser.add_argument('--pretrained_model', type=str,
help='Load a pretrained model before training starts.', default = '')
parser.add_argument('--data_dir', type=str,
help='Path to the data directory containing aligned face patches. Multiple directories are separated with colon.',
default='')
parser.add_argument('--model_def', type=str,
help='Model definition. Points to a module containing the definition of the inference graph.', default='models.inception_resnet_v1')
parser.add_argument('--max_nrof_epochs', type=int,
help='Number of epochs to run.', default=40)
parser.add_argument('--batch_size', type=int,
help='Number of images to process in a batch.', default=90)
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=160)
parser.add_argument('--epoch_size', type=int,
help='Number of batches per epoch.', default=1000)
parser.add_argument('--alpha', type=float,
help='Positive to negative triplet distance margin.', default=0.2)
parser.add_argument('--num_attribute', type=int,
help='', default=1)
parser.add_argument('--embedding_size', type=int,
help='Dimensionality of the embedding.', default=128)
parser.add_argument('--keep_probability', type=float,
help='Keep probability of dropout for the fully connected layer(s).', default=1.0)
parser.add_argument('--weight_decay', type=float,
help='L2 weight regularization.', default=0.0)
parser.add_argument('--optimizer', type=str, choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM'],
help='The optimization algorithm to use', default='ADAGRAD')
parser.add_argument('--learning_rate', type=float,
help='Initial learning rate. If set to a negative value a learning rate ' +
'schedule can be specified in the file "learning_rate_schedule.txt"', default=0.1)
parser.add_argument('--learning_rate_decay_epochs', type=int,
help='Number of epochs between learning rate decay.', default=100)
parser.add_argument('--learning_rate_decay_factor', type=float,
help='Learning rate decay factor.', default=1.0)
parser.add_argument('--moving_average_decay', type=float,
help='Exponential decay for tracking of training parameters.', default=0.9999)
parser.add_argument('--seed', type=int,
help='Random seed.', default=666)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))