-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathTrainerNormal.py
993 lines (861 loc) · 51.9 KB
/
TrainerNormal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
from __future__ import division, print_function, absolute_import
import os
import time
import shutil
import numpy as np
import cv2 as cv
import glob
import scipy.io as sio
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import initializers
from Ops import Ops
from DataLoaderNormal import DataLoader
from CommonUtil import logger, safe_rm_mkdir, safe_mkdir
from Constants import consts
log = logger.write
class Trainer(object):
def __init__(self, sess):
self.sess = sess
def train(self,
dataset_dir, # path to dataset
dataset_training_indices, # data starting index
dataset_testing_indices, # data ending index
results_dir='./results/results_depth_multi_normal3', # directory to stored the results
graph_dir='./results/graph_depth_multi_normal3', # directory as tensorboard working space
batch_size=4, # batch size
epoch_num=9, # epoch number
first_channel=8,
bottle_width=4,
dis_reps=1,
mode='retrain', # training mode: 'retrain' or 'finetune'
pre_model_dir=None): # directory to pre-trained model
"""
Train
construct the network, data loader and loss function accroding to the argument
"""
assert batch_size > 1 # tf.squeeze is used, so need to make sure that the batch dim won't be removed
self._setup_result_folder(mode, results_dir, graph_dir)
# logger.set_log_file(results_dir + '/log.txt')
# setups data loader
data_loader_num = 4
data_loaders, val_data_loader = self._setup_data_loader(data_loader_num, batch_size, dataset_dir, dataset_training_indices, dataset_testing_indices)
batch_num = len(dataset_training_indices)//batch_size
test_batch_num = 16 // batch_size
log('#epoch = %d, #batch = %d' % (epoch_num, batch_num))
# loads some testing data for visualization and supervision
test_conc_imgs, test_smpl_v_volumes, test_mesh_volumes = [], [], []
safe_rm_mkdir(results_dir + '/test_gt')
for i in range(test_batch_num):
_, conc_imgs, smpl_v_volumes, mesh_volumes = val_data_loader.queue.get()
test_conc_imgs.append(conc_imgs)
test_smpl_v_volumes.append(smpl_v_volumes)
test_mesh_volumes.append(mesh_volumes)
self._save_tuple(conc_imgs, smpl_v_volumes, mesh_volumes, results_dir+'/test_gt', i)
# setups network and training loss
self._build_network(batch_size, first_channel, bottle_width)
loss_collection = self._build_loss(self.v_d[-1], self.Y, self.M_fv, self.M_sv,
self.Ns, self.n_final, self.dis_real_out, self.dis_fake_out,
lamb_sil=self.lamb_sil, lamb_nml_rf=self.lamb_nml,
lamb_dis=self.lamb_dis, w=0.7)
loss_keys = ['vol_loss', 'sil_loss', 'normal_loss', 'nr_loss', 'recon_loss', 'total_loss']
# setups optimizer and visualizer
recon_loss = loss_collection['recon_loss']
nr_loss = loss_collection['nr_loss']
total_loss = loss_collection['total_loss']
dis_d_loss = loss_collection['dis_d_loss']
recon_opt, nr_opt, all_opt, dis_opt = self._build_optimizer(self.lr, recon_loss, nr_loss, total_loss, dis_d_loss)
merged_scalar_loss, writer = self._setup_summary(self.sess, graph_dir, loss_collection)
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
saver = self._setup_saver(pre_model_dir)
for epoch_id in range(epoch_num):
log('Running epoch No.%d' % epoch_id)
loss_log_str = ''
for batch_id in range(batch_num):
iter_id = epoch_id*batch_num+batch_id
lrate = 1e-4 if epoch_id <= epoch_num/3*2 else 1e-5
lrate_d = lrate * 0.1
l_sil = consts.lamb_sil
l_dis = consts.lamb_dis
l_nml_rf = consts.lamb_nml_rf
# training ==============================================================
ind, conc_imgs, smpl_v_volumes, mesh_volumes = data_loaders[iter_id % data_loader_num].queue.get()
f_dict = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate)
f_dict_d = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate_d)
if epoch_id <= epoch_num / 3:
out = self.sess.run([recon_opt] + [loss_collection[lk] for lk in loss_keys] + [merged_scalar_loss], feed_dict=f_dict)
loss_curr_list = out[1:-1]
graph_results = out[-1]
elif epoch_id <= epoch_num / 3 * 2:
# for _ in range(dis_reps):
# self.sess.run([dis_opt], feed_dict=f_dict_d)
out = self.sess.run([nr_opt] + [loss_collection[lk] for lk in loss_keys] + [merged_scalar_loss],feed_dict=f_dict)
loss_curr_list = out[1:-1]
graph_results = out[-1]
else:
# for _ in range(dis_reps):
# self.sess.run([dis_opt], feed_dict=f_dict_d)
out = self.sess.run([all_opt] + [loss_collection[lk] for lk in loss_keys] + [merged_scalar_loss], feed_dict=f_dict)
loss_curr_list = out[2:-1]
graph_results = out[-1]
writer.add_summary(graph_results, epoch_id * batch_num + batch_id)
scale = 1
log('Epoch %d, Batch %d: '
'vol_loss:%.4f, sil_loss:%.4f, normal_loss:%.4f, nr_loss:%.4f, '
'recon_loss:%.4f, total_loss:%.4f' %
(epoch_id, batch_id, loss_curr_list[0] * scale, loss_curr_list[1] * scale,
loss_curr_list[2] * scale, loss_curr_list[3] * scale,
loss_curr_list[4] * scale, loss_curr_list[5] * scale))
# validation ===========================================================
if iter_id % 5 == 0:
_, conc_imgs, smpl_v_volumes, mesh_volumes = val_data_loader.queue.get()
f_dict = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, l_sil, l_dis, l_nml_rf, lrate)
loss_val_curr = self.sess.run([loss_collection[lk] for lk in loss_keys], feed_dict=f_dict)
loss_log_str += ('%f %f %f %f %f %f ' % (loss_curr_list[0], loss_curr_list[1], loss_curr_list[2],
loss_curr_list[3], loss_curr_list[4], loss_curr_list[5]))
loss_log_str += ('%f %f %f %f %f %f \n' % (loss_val_curr[0], loss_val_curr[1], loss_val_curr[2],
loss_val_curr[3], loss_val_curr[4], loss_val_curr[5]))
log('End of epoch. ')
with open(os.path.join(results_dir, 'loss_log.txt'), 'a') as fp:
fp.write(loss_log_str)
if epoch_id > 0.5 * epoch_num:
test_dir = os.path.join(results_dir, '%04d' % epoch_id)
safe_rm_mkdir(test_dir)
saver.save(self.sess, os.path.join(results_dir, 'model.ckpt'))
# test the network and save the results
for tbi in range(test_batch_num):
f_dict = {self.X: test_smpl_v_volumes[tbi], self.Y: test_mesh_volumes[tbi],
self.R: test_conc_imgs[tbi][:, :, :, :6]}
n0_p, n1_p, n2_p, n3_p = self.sess.run([self.n0_project, self.n1_project,
self.n2_project, self.n3_project],
feed_dict=f_dict)
nps = np.concatenate((n0_p, n1_p, n2_p, n3_p), axis=-1)
res = self.sess.run(self.v_out, feed_dict=f_dict)
res_n = self.sess.run(self.n_final, feed_dict=f_dict)
self._save_results_raw_training(res, res_n, nps, test_dir, tbi)
# backup model
if True: # epoch_id % 10 == 0:
saver.save(self.sess, os.path.join(results_dir, 'model.ckpt'))
for data in data_loaders:
data.stop_queue = True
val_data_loader.stop_queue = True
@staticmethod
def _setup_result_folder(mode,
results_dir='./results/results_depth_multi_normal3',
graph_dir='./results/graph_depth_multi_normal3'):
# create folders
if mode == 'retrain':
if os.path.exists(results_dir):
log('Warning: %s already exists. It will be removed. ' % results_dir)
shutil.rmtree(results_dir)
if os.path.exists(graph_dir):
log('Warning: %s already exists. It will be removed. ' % graph_dir)
shutil.rmtree(graph_dir)
safe_rm_mkdir(results_dir)
safe_rm_mkdir(graph_dir)
safe_rm_mkdir(results_dir + '/code_bk')
pylist = glob.glob(os.path.join('./', '*.py'))
for pyfile in pylist:
shutil.copy(pyfile, results_dir + '/code_bk')
@staticmethod
def _setup_data_loader(data_loader_num, batch_size, dataset_dir,
dataset_training_indices, dataset_testing_indices):
log('Constructing data loader...')
log('#training_data =', len(dataset_training_indices))
log('#testing_data =', len(dataset_testing_indices))
data_loaders = []
for _ in range(data_loader_num):
data = DataLoader(batch_size, dataset_dir, dataset_training_indices, augmentation=True)
data.daemon = True
data.start()
data_loaders.append(data)
val_data_loader = DataLoader(batch_size, dataset_dir, dataset_testing_indices, augmentation=False)
val_data_loader.daemon = True
val_data_loader.start()
log('DataLoaders start. ')
return data_loaders, val_data_loader
def _construct_feed_dict(self, conc_imgs, smpl_v_volumes, mesh_volumes,
l_sil, l_dis, l_nml_rf, lrate):
in_imgs = conc_imgs[:, :, :, :6] # use only first 6 channels as input
m0, m1 = conc_imgs[:, :, :, 6:7], conc_imgs[:, :, :, 7:8]
n0, n1 = conc_imgs[:, :, :, 10:13], conc_imgs[:, :, :, 13:16]
n2, n3 = conc_imgs[:, :, :, 16:19], conc_imgs[:, :, :, 19:22]
f_dict = {self.X: smpl_v_volumes,
self.Y: mesh_volumes,
self.R: in_imgs,
self.M_fv: m0, self.M_sv: m1,
self.N0: n0, self.N1: n1, self.N2: n2, self.N3: n3,
self.lamb_sil: l_sil, self.lamb_dis: l_dis, self.lamb_nml: l_nml_rf,
self.lr: lrate}
return f_dict
def test(self,
dataset_dir, # path to testing dataset
dataset_prefix_list, # file name prefix of testing data
pre_model_dir, # path to pretrained model
first_channel=8,
bottle_width=4): # directory to pre-trained model
"""
Test
construct the network, data loader and loss function accroding to the argument
"""
log = logger.write
batch_size = 1 # batch size
self._build_network(batch_size, first_channel, bottle_width)
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
log('Constructing saver...')
saver = self._setup_saver(pre_model_dir)
for dataset_prefix in dataset_prefix_list:
prefix = dataset_dir + '/' + dataset_prefix
img = cv.cvtColor(cv.imread(prefix + 'color.png'), cv.COLOR_BGR2RGB)
# prefix = './TestingData/test_'
# img = cv.cvtColor(cv.imread(prefix + 'input.jpg'), cv.COLOR_BGR2RGB)
img = np.float32(img) / 255.0
img = DataLoader.resize_and_crop_img(img)
vmap = cv.cvtColor(cv.imread(prefix + 'vmap.png'), cv.COLOR_BGR2RGB)
vmap = np.float32(vmap) / 255.0
vmap = DataLoader.resize_and_crop_img(vmap)
smpl_v_volume = sio.loadmat(prefix + 'volume.mat')
smpl_v_volume = smpl_v_volume['smpl_v_volume']
smpl_v_volume = np.transpose(smpl_v_volume, (2, 1, 0, 3))
smpl_v_volume = np.flip(smpl_v_volume, axis=1)
concat_in = np.concatenate((img, vmap), axis=-1)
concat_in = np.expand_dims(concat_in, axis=0)
smpl_v_volume = np.expand_dims(smpl_v_volume, axis=0)
n0_p, n1_p, n2_p, n3_p = self.sess.run([self.n0_project, self.n1_project, self.n2_project, self.n3_project],
feed_dict={self.X: smpl_v_volume, self.R: concat_in})
nps = np.concatenate((n0_p, n1_p, n2_p, n3_p), axis=-1)
res = self.sess.run(self.v_out, feed_dict={self.X: smpl_v_volume, self.R: concat_in})
res_n = self.sess.run(self.n_final, feed_dict={self.X: smpl_v_volume, self.R: concat_in})
log('Testing results saved to', dataset_dir)
self._save_results_raw_testing(res, res_n, nps, dataset_dir, dataset_prefix)
def test_with_gt(self,
dataset_dir, # path to dataset
dataset_testing_indices, # data ending index
pre_model_dir,
output_dir,
first_channel=8,
bottle_width=4): # directory to pre-trained model
safe_mkdir(output_dir)
loader = DataLoader(1, dataset_dir, dataset_testing_indices, augmentation=False)
self._build_network(1, first_channel, bottle_width)
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
saver = self._setup_saver(pre_model_dir)
for i in dataset_testing_indices:
conc_imgs, smpl_v_volumes, mesh_volumes = loader.load_tuple_batch([i])
f_dict = self._construct_feed_dict(conc_imgs, smpl_v_volumes, mesh_volumes, 0,
0, 0, 0)
n0_p, n1_p, n2_p, n3_p = self.sess.run([self.n0_project, self.n1_project,
self.n2_project, self.n3_project],
feed_dict=f_dict)
nps = np.concatenate((n0_p, n1_p, n2_p, n3_p), axis=-1)
res, res_n = self.sess.run([self.v_out, self.n_final],
feed_dict=f_dict)
log('Testing results saved to ', output_dir)
self._save_results_raw_testing(res, res_n, nps, output_dir, '%08d_' % i)
def _build_network(self, batch_size, first_channel, bottle_width):
"""
Builds the image-guided volume-to-volume network
Warning: the network input format: BDHWC for volume, and BHWC for image
"""
log('Constructing network...')
with tf.name_scope('params'):
self.lamb_sil = tf.placeholder(dtype=tf.float32)
self.lamb_dis = tf.placeholder(dtype=tf.float32)
self.lamb_nml = tf.placeholder(dtype=tf.float32)
self.lr = tf.placeholder(dtype=tf.float32)
with tf.name_scope('input'):
self.X = tf.placeholder(shape=[batch_size, consts.dim_w, consts.dim_h, consts.dim_w, 3], dtype=tf.float32)
self.Y = tf.placeholder(shape=[batch_size, consts.dim_w, consts.dim_h, consts.dim_w, 1], dtype=tf.float32)
self.R = tf.placeholder(shape=[batch_size, 2*consts.dim_h, 2*consts.dim_w, 6], dtype=tf.float32)
self.M_fv = tf.placeholder(shape=[batch_size, 2*consts.dim_h, 2*consts.dim_w, 1], dtype=tf.float32)
self.M_sv = tf.placeholder(shape=[batch_size, 2*consts.dim_h, 2*consts.dim_w, 1], dtype=tf.float32)
self.N0 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32)
self.N1 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32)
self.N2 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32)
self.N3 = tf.placeholder(shape=[batch_size, 2 * consts.dim_h, 2 * consts.dim_w, 3], dtype=tf.float32)
self.Ns = tf.concat([self.N0, self.N1, self.N2, self.N3], axis=-1)
with tf.name_scope('network'):
self.i_e = self._build_image_encoder(self.R, first_channel, bottle_width, logger.write)
self.sft_a, self.sft_b = self._build_affine_params(self.i_e, logger.write)
self.v_e = self._build_volume_encoder(self.X, first_channel, bottle_width, self.sft_a, self.sft_b, logger.write)
self.v_d = self._build_volume_decoder(self.v_e, 1, consts.dim_w, self.sft_a, self.sft_b, logger.write)
self.v_out = self.v_d[-1]
self.d0, self.d1, self.d2, self.d3 = self._build_depth_projector(self.v_out)
self.n0_project = self._build_normal_calculator(self.d0)
self.n1_project = self._build_normal_calculator(self.d1)
self.n2_project = self._build_normal_calculator(self.d2)
self.n3_project = self._build_normal_calculator(self.d3)
self.nr0 = self._build_normal_refiner(self.n0_project, self.R, logger.write)
self.n_final_0 = self.nr0[-1]
self.nr1, self.nr2, self.nr3 = self._build_normal_refiner2(self.n1_project, self.n2_project, self.n3_project, logger.write)
self.n_final_1, self.n_final_2, self.n_final_3 = self.nr1[-1], self.nr2[-1], self.nr3[-1]
self.n_final = tf.concat([self.n_final_0, self.n_final_1, self.n_final_2, self.n_final_3], axis=-1)
self.dis_real_out, self.dis_fake_out = self._build_normal_discriminator(self.n_final, self.Ns, self.M_fv, self.M_sv, self.R, logger.write)
log('The whole graph has %d trainable parameters' % Ops.get_variable_num(logger))
@staticmethod
def _build_image_encoder(R, first_channel, bottle_neck_w, print_fn=None):
"""
Build the volume encoder
"""
R_ = tf.image.resize_bilinear(R, (consts.dim_h, consts.dim_w))
r_shape = R_.get_shape().as_list()
r_w = r_shape[2]
if print_fn is None:
print_fn = print
# calculate network parameters
w_e = [r_w // 2]
c_e = [first_channel]
while w_e[-1] > bottle_neck_w:
w_e.append(w_e[-1]//2)
c_e.append(c_e[-1]*2)
print_fn('-- Image encoder layers\' width', w_e)
print_fn('-- Image encoder layers\' channel', c_e)
layers = [R_]
for c in c_e:
with tf.variable_scope('i_e_%d' % (len(layers))):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], c, [7, 7], 2, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
print_fn('-- Image encoder layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
return layers
@staticmethod
def _build_affine_params(E_i, print_fn=None):
if print_fn is None:
print_fn = print
sft_a, sft_b = [], []
for li in range(1, len(E_i)):
with tf.variable_scope('a_p_%d' % (len(sft_a)+1)):
nin_shape = E_i[li].get_shape().as_list()
net_a = slim.conv2d(E_i[li], nin_shape[-1], [1, 1], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0_pa')
sft_a.append(net_a)
net_b = slim.conv2d(E_i[li], nin_shape[-1], [1, 1], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0_pb')
sft_b.append(net_b)
print_fn('-- SFT parameters layer %d:' % len(sft_a), nin_shape, '-->', net_a.get_shape().as_list())
return sft_a, sft_b
@staticmethod
def _build_volume_encoder(X, frist_channel, bottle_neck_w, sft_params_a, sft_params_b, print_fn=None):
"""
Build the volume encoder
"""
x_shape = X.get_shape().as_list() # (batch, x_dim, y_dim, z_dim, channel)
x_w = x_shape[1]
if print_fn is None:
print_fn = print
# calculate network parameters
w_e = [x_w//2]
c_e = [frist_channel]
while w_e[-1] > bottle_neck_w:
w_e.append(w_e[-1]//2)
c_e.append(c_e[-1]*2)
print_fn('-- Volume encoder layers\' width', w_e)
print_fn('-- Volume encoder layers\' channel', c_e)
layers = [X]
for ci, c in enumerate(c_e):
with tf.variable_scope('v_e_%d' % len(layers)):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv3d(layers[-1], c, [7, 7, 7], 2, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
net = Ops.featrue_affine(net, sft_params_a[ci], sft_params_b[ci])
print_fn('-- Volume encoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
return layers
@staticmethod
def _build_volume_decoder(layers_e, last_channel, out_w, sft_params_a, sft_params_b, print_fn=None):
"""
Build the volume decoder
"""
Z = layers_e[-1]
z_shape = Z.get_shape().as_list()
z_w = z_shape[1]
z_c = z_shape[-1]
if print_fn is None:
print_fn = print
# calculate network parameters
w_d = [z_w*2]
c_d = [z_c//2]
while w_d[-1] < out_w:
w_d.append(w_d[-1]*2)
c_d.append(c_d[-1]//2)
print_fn('-- Volume decoder layers\' width', w_d)
print_fn('-- Volume decoder layers\' channel', c_d)
layers = [Z]
for ci, c in enumerate(c_d):
with tf.variable_scope('v_d_%d' % len(layers)):
if ci == 0:
net = layers[-1]
else:
net = tf.concat([layers[-1], layers_e[-ci-1]], axis=-1) # U-net structure
nin_shape = net.get_shape().as_list()
net = slim.conv3d_transpose(net, c, [7, 7, 7], 2, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
print_fn('-- Volume decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
with tf.variable_scope('v_d_out'):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv3d(layers[-1], last_channel, [1, 1, 1], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=None,
activation_fn=tf.nn.sigmoid, scope='conv0') # output to (0, 1)
print_fn('-- Volume decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
return layers
@staticmethod
def _build_sil_projector(volume):
with tf.name_scope('projector'):
vshape = volume.get_shape().as_list()
v1 = tf.reshape(volume, (vshape[0], vshape[1], vshape[2], vshape[3])) # remove last dim
fv = tf.reduce_max(v1, axis=1) # project along z-axis
fv = tf.squeeze(fv) # remove z-dim
fv = tf.expand_dims(fv, axis=-1) # add channel dim
sv = tf.reduce_max(v1, axis=3) # project along x-axis
sv = tf.squeeze(sv) # remove x-dim
sv = tf.transpose(sv, (0, 2, 1)) # convert to HW format
sv = tf.expand_dims(sv, axis=-1) # add channel dim
return fv, sv
@staticmethod
def _build_depth_projector(volume):
with tf.name_scope('depth_projector'):
vshape = volume.get_shape().as_list()
v1 = tf.reshape(volume, (vshape[0], vshape[1], vshape[2], vshape[3])) # remove last dim
v1 = tf.sigmoid(9999*(v1-0.5))
d_array = np.asarray(range(consts.dim_w), dtype=np.float32)
d_array = (d_array - (consts.dim_w / 2) + 0.5) * consts.voxel_size
d_array = tf.constant(d_array, dtype=tf.float32)
# front view (view 0) projection (along z-axis)
M = -99
d_array_v0 = tf.reshape(d_array, (1, -1, 1, 1)) # BDHW
depth_volume_0 = M*(1-v1) + d_array_v0 * v1
depth_project_0 = tf.reduce_max(depth_volume_0, axis=1) # max along D (Z) --> BHW
depth_project_0 = tf.reshape(depth_project_0, (vshape[0], vshape[2], vshape[3], 1))
# side view (view 1) projection (along x_axis)
M = 99
d_array_v1 = tf.reshape(d_array, (1, 1, 1, -1))
depth_volume_1 = M*(1-v1) + d_array_v1 * v1
depth_project_1 = tf.reduce_min(depth_volume_1, axis=3) # min along W (X) --> BDH
depth_project_1 = -depth_project_1
depth_project_1 = tf.reshape(tf.transpose(depth_project_1, (0, 2, 1)), (vshape[0], vshape[2], vshape[3], 1))
# back view (view 2) projection (along z-axis)
M = 99
depth_volume_2 = M*(1-v1) + d_array_v0 * v1
depth_project_2 = tf.reduce_min(depth_volume_2, axis=1) # max along D (Z) --> BHW
depth_project_2 = -depth_project_2
depth_project_2 = tf.reshape(depth_project_2, (vshape[0], vshape[2], vshape[3], 1))
# size view (view 3) projection (along x-axis)
M = -99
depth_volume_3 = M*(1-v1) + d_array_v1 * v1
depth_project_3 = tf.reduce_max(depth_volume_3, axis=3) # min along W (X) --> BDH
depth_project_3 = tf.reshape(tf.transpose(depth_project_3, (0, 2, 1)), (vshape[0], vshape[2], vshape[3], 1))
return depth_project_0, depth_project_1, depth_project_2, depth_project_3
@staticmethod
def _build_normal_calculator(depth):
d_shape = depth.get_shape().as_list()
batch_sz = d_shape[0]
img_h = d_shape[1]
img_w = d_shape[2]
w_array = np.asarray(range(consts.dim_w), dtype=np.float32)
w_array = (w_array - (consts.dim_w / 2) + 0.5) * consts.voxel_size
w_array = np.reshape(w_array, (1, 1, -1, 1)) # BHWC
w_array = np.tile(w_array, (batch_sz, img_h, 1, 1))
w_map = tf.constant(w_array, dtype=tf.float32)
h_array = np.asarray(range(consts.dim_h), dtype=np.float32)
h_array = (h_array - (consts.dim_h / 2) + 0.5) * consts.voxel_size
h_array = np.reshape(h_array, (1, -1, 1, 1)) # BHWC
h_array = np.tile(h_array, (batch_sz, 1, img_w, 1))
h_map = tf.constant(h_array, dtype=tf.float32)
# vmap = tf.concat([w_map, h_map, depth], axis=-1)
sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32)
sobel_x_filter = tf.reshape(sobel_x, [3, 3, 1, 1])
sobel_y_filter = tf.transpose(sobel_x_filter, [1, 0, 2, 3])
w_map_dx = tf.nn.conv2d(w_map, sobel_x_filter, strides=[1, 1, 1, 1], padding='SAME')
h_map_dx = tf.nn.conv2d(h_map, sobel_x_filter, strides=[1, 1, 1, 1], padding='SAME')
depth_dx = tf.nn.conv2d(depth, sobel_x_filter, strides=[1, 1, 1, 1], padding='SAME')
dx = tf.concat([w_map_dx, h_map_dx, depth_dx], axis=-1)
w_map_dy = tf.nn.conv2d(w_map, sobel_y_filter, strides=[1, 1, 1, 1], padding='SAME')
h_map_dy = tf.nn.conv2d(h_map, sobel_y_filter, strides=[1, 1, 1, 1], padding='SAME')
depth_dy = tf.nn.conv2d(depth, sobel_y_filter, strides=[1, 1, 1, 1], padding='SAME')
dy = tf.concat([w_map_dy, h_map_dy, depth_dy], axis=-1)
normal = tf.cross(dy, dx)
normal = normal / tf.norm(normal, axis=-1, keepdims=True)
return normal
@staticmethod
def _build_normal_refiner(normal_0, rgb, print_fn=None):
conc_d = tf.image.resize_bilinear(normal_0, (consts.dim_h * 2, consts.dim_w * 2))
conc = tf.concat([conc_d, rgb], axis=-1)
w_e = [consts.dim_w//2]
c_e = [16]
bottle_neck_w = 4
while w_e[-1] > bottle_neck_w:
w_e.append(w_e[-1]//2)
c_e.append(c_e[-1]*2)
if print_fn is None:
print_fn = print
print_fn('-- Normal refiner 0 encoder layers\' width', w_e)
print_fn('-- Normal refiner 0 encoder layers\' channel', c_e)
layers = [conc]
for c in c_e:
with tf.variable_scope('nml_rf_e_%d' % (len(layers))):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], c, [4, 4], 2, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
print_fn('-- Normal refiner encoder 0 layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
w_d = [w_e[-1]*2]
c_d = [c_e[-1]//2]
while w_d[-1] < consts.dim_w:
w_d.append(w_d[-1]*2)
c_d.append(c_d[-1]//2)
print_fn('-- Normal refiner 0 decoder layers\' width', w_d)
print_fn('-- Normal refiner 0 decoderlayers\' channel', c_d)
for ci, c in enumerate(c_d):
with tf.variable_scope('nml_rf_d_%d' % (len(layers))):
nin_shape = layers[-1].get_shape().as_list()
net = tf.image.resize_bilinear(layers[-1], (nin_shape[1]*2, nin_shape[2]*2))
net = tf.concat([net, layers[len(w_e)-ci-1]], axis=-1) # U-net structure
net = slim.conv2d(net, c, [4, 4], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
print_fn('-- Normal refiner decoder layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
with tf.variable_scope('nml_rf_d_out'):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], 3, [1, 1], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=None,
activation_fn=tf.nn.tanh, scope='conv0') # output to (-1, 1)
net = net + conc_d
print_fn('-- Normal refiner 0 decoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
return layers
@staticmethod
def _build_normal_refiner2(normal_1, normal_2, normal_3, print_fn=None):
def build_u_net(normal, reuse, print_fn=None):
conc = tf.image.resize_bilinear(normal, (consts.dim_h * 2, consts.dim_w * 2))
w_e = [consts.dim_w // 2]
c_e = [16]
bottle_neck_w = 4
while w_e[-1] > bottle_neck_w:
w_e.append(w_e[-1] // 2)
c_e.append(c_e[-1] * 2)
if print_fn is None:
print_fn = print
if not reuse:
print_fn('-- Normal refiner 1 encoder layers\' width', w_e)
print_fn('-- Normal refiner 1 encoder layers\' channel', c_e)
layers = [conc]
for c in c_e:
with tf.variable_scope('nml_rf2_e_%d' % (len(layers)), reuse=reuse):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], c, [4, 4], 2, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
if not reuse:
print_fn('-- Normal refiner 1 encoder layer %d:' % len(layers), nin_shape, '-->',
net.get_shape().as_list())
layers.append(net)
w_d = [w_e[-1] * 2]
c_d = [c_e[-1] // 2]
while w_d[-1] < consts.dim_w:
w_d.append(w_d[-1] * 2)
c_d.append(c_d[-1] // 2)
if not reuse:
print_fn('-- Normal refiner 1 decoder layers\' width', w_d)
print_fn('-- Normal refiner 1 decoderlayers\' channel', c_d)
for ci, c in enumerate(c_d):
with tf.variable_scope('nml_rf2_d_%d' % (len(layers)), reuse=reuse):
nin_shape = layers[-1].get_shape().as_list()
net = tf.image.resize_bilinear(layers[-1], (nin_shape[1] * 2, nin_shape[2] * 2))
net = tf.concat([net, layers[len(w_e) - ci - 1]], axis=-1) # U-net structure
net = slim.conv2d(net, c, [4, 4], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
if not reuse:
print_fn('-- Normal refiner 1 decoder layer %d:' % len(layers), nin_shape, '-->',
net.get_shape().as_list())
layers.append(net)
with tf.variable_scope('nml_rf2_d_out', reuse=reuse):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], 3, [1, 1], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=None,
activation_fn=tf.nn.tanh, scope='conv0') # output to (-1, 1)
net = net + conc
if not reuse:
print_fn('-- Normal refiner 1 decoder layer %d:' % len(layers), nin_shape, '-->',
net.get_shape().as_list())
layers.append(net)
return layers
with tf.name_scope('normal_1_R'):
normal_1_r = build_u_net(normal_1, reuse=False, print_fn=print_fn)
with tf.name_scope('normal_2_R'):
normal_2_r = build_u_net(normal_2, reuse=True, print_fn=print_fn)
with tf.name_scope('normal_3_R'):
normal_3_r = build_u_net(normal_3, reuse=True, print_fn=print_fn)
return normal_1_r, normal_2_r, normal_3_r
@staticmethod
def _build_normal_discriminator(d_pred, d_gt, mask_fv_gt, mask_sv_gt, in_img, print_fn=None):
if print_fn is None:
print_fn = print
m_conc = tf.concat([mask_fv_gt, mask_fv_gt, mask_fv_gt,
mask_sv_gt, mask_sv_gt, mask_sv_gt,
mask_fv_gt, mask_fv_gt, mask_fv_gt,
mask_sv_gt, mask_sv_gt, mask_sv_gt], axis=-1)
d_pred_m = m_conc * d_pred # mask out background
d_gt_m = m_conc * d_gt # mask out background
conc_pred = tf.concat([d_pred_m, in_img], axis=-1)
conc_gt = tf.concat([d_gt_m, in_img], axis=-1)
conc_pred = conc_pred
conc_gt = conc_gt
def build_D(conc, reuse=False):
batch_sz = conc.get_shape().as_list()[0]
layer_w = conc.get_shape().as_list()[2]
w_e = [layer_w // 2]
c_e = [16]
while w_e[-1] > 16:
w_e.append(w_e[-1] // 2)
c_e.append(min(c_e[-1] * 2, 64))
if not reuse:
print_fn('-- Normal discriminator encoder layers\' width', w_e)
print_fn('-- Normal discriminator encoder layers\' channel', c_e)
layers = [conc]
for c in c_e:
with tf.variable_scope('nml_dis_e_%d' % (len(layers)), reuse=reuse):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], c, [3, 3], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.leaky_relu, scope='conv0')
net = slim.max_pool2d(net, [2, 2], [2, 2], padding='SAME', scope='maxp0')
if not reuse:
print_fn('-- Normal discriminator encoder layer %d:'%len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
with tf.variable_scope('nml_dis_out', reuse=reuse):
nin_shape = layers[-1].get_shape().as_list()
net = slim.conv2d(layers[-1], 1, [1, 1], 1, padding='SAME',
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
rate=1, normalizer_fn=None,
activation_fn=tf.nn.sigmoid, scope='conv0')
if not reuse:
print_fn('-- Normal discriminator encoder layer %d:' % len(layers), nin_shape, '-->', net.get_shape().as_list())
layers.append(net)
return layers
with tf.name_scope('Dis_real'):
d_out_gt = build_D(tf.concat([conc_gt[:, :, :, 0:3], conc_gt[:, :, :, 12:15]], axis=-1), reuse=False)
with tf.name_scope('Dis_fake'):
d_out_pred = build_D(tf.concat([conc_pred[:, :, :, 0:3], conc_pred[:, :, :, 12:15]], axis=-1), reuse=True)
# with tf.name_scope('Dis_real_0'):
# d_out_gt0 = build_D(conc_gt[:, :, :, 0:3], reuse=False)
# with tf.name_scope('Dis_real_1'):
# d_out_gt1 = build_D(conc_gt[:, :, :, 3:6], reuse=True)
# with tf.name_scope('Dis_real_2'):
# d_out_gt2 = build_D(conc_gt[:, :, :, 6:9], reuse=True)
# with tf.name_scope('Dis_real_3'):
# d_out_gt3 = build_D(conc_gt[:, :, :, 9:12], reuse=True)
# with tf.name_scope('Dis_fake_0'):
# d_out_pred0 = build_D(conc_pred[:, :, :, 0:3], reuse=True)
# with tf.name_scope('Dis_fake_1'):
# d_out_pred1 = build_D(conc_pred[:, :, :, 3:6], reuse=True)
# with tf.name_scope('Dis_fake_2'):
# d_out_pred2 = build_D(conc_pred[:, :, :, 6:9], reuse=True)
# with tf.name_scope('Dis_fake_3'):
# d_out_pred3 = build_D(conc_pred[:, :, :, 9:12], reuse=True)
# d_out_gt = tf.concat([d_out_gt0[-1], d_out_gt1[-1], d_out_gt2[-1], d_out_gt3[-1]], axis=-1)
# d_out_pred = tf.concat([d_out_pred0[-1], d_out_pred1[-1], d_out_pred2[-1], d_out_pred3[-1]], axis=-1)
return d_out_gt[-1], d_out_pred[-1]
@staticmethod
def _build_loss(vol_pred, vol_gt,
mask_fv_gt, mask_sv_gt,
normal_hd_gt, normal_hd_pred,
dis_real, dis_fake,
lamb_sil=0.1, lamb_nml_rf=0.01, lamb_dis=0.001,
w=0.7):
log('Constructing loss function...')
s = 1000 # to scale the loss
shp = mask_fv_gt.get_shape().as_list()
with tf.name_scope('loss'):
# volume loss
vol_loss = s * tf.reduce_mean(-w * tf.reduce_mean(vol_gt * tf.log(vol_pred + 1e-8))
- (1 - w) * tf.reduce_mean((1 - vol_gt) * tf.log(1 - vol_pred + 1e-8)))
# silhouette loss
mask_fv_pred, mask_sv_pred = Trainer._build_sil_projector(vol_pred)
#mask_fv_gt_p, mask_sv_gt_p = Trainer._build_sil_projector(vol_gt)
mask_fv_gt_rs = tf.image.resize_bilinear(mask_fv_gt, (shp[1]//2, shp[2]//2))
mask_sv_gt_rs = tf.image.resize_bilinear(mask_sv_gt, (shp[1]//2, shp[2]//2))
sil_loss_fv = s * tf.reduce_mean(-tf.reduce_mean(mask_fv_gt_rs * tf.log(mask_fv_pred + 1e-8))
-tf.reduce_mean((1-mask_fv_gt_rs) * tf.log(1 - mask_fv_pred + 1e-8)))
sil_loss_sv = s * tf.reduce_mean(-tf.reduce_mean(mask_sv_gt_rs * tf.log(mask_sv_pred + 1e-8))
-tf.reduce_mean((1-mask_sv_gt_rs) * tf.log(1 - mask_sv_pred + 1e-8)))
sil_loss = sil_loss_fv + sil_loss_sv
# normal refinement loss
normal_loss = 0
for i in range(4):
normal_hd_gt_ = normal_hd_gt[:, :, :, (i*3):(i*3+3)]
normal_hd_pred_ = normal_hd_pred[:, :, :, (i*3):(i*3+3)]
normal_cos = 1 - tf.reduce_sum(normal_hd_gt_*normal_hd_pred_, axis=-1, keepdims=True) \
/ (tf.norm(normal_hd_gt_, axis=-1, keepdims=True)*tf.norm(normal_hd_pred_, axis=-1, keepdims=True))
# mask out invalid areas
if i % 2 == 0:
normal_loss += s * tf.reduce_mean(mask_fv_gt*normal_cos)
normal_loss += s * 0.001 * tf.reduce_mean(mask_fv_gt*tf.square(normal_hd_pred_-normal_hd_gt_))
else:
normal_loss += s * tf.reduce_mean(mask_sv_gt*normal_cos)
normal_loss += s * 0.001 * tf.reduce_mean(mask_sv_gt*tf.square(normal_hd_pred_-normal_hd_gt_))
# normal discriminator loss
dis_d_real_loss = s * tf.reduce_mean(tf.square(dis_fake))
dis_d_fake_loss = s * tf.reduce_mean(tf.square(1-dis_real))
dis_d_loss = dis_d_real_loss + dis_d_fake_loss
dis_g_loss = s * tf.reduce_mean(tf.square(1-dis_fake))
# total loss
recon_loss = vol_loss + lamb_sil * sil_loss # reconstruction loss
nr_loss = lamb_nml_rf * normal_loss + lamb_dis * dis_g_loss # normal refinement loss
total_loss = recon_loss + nr_loss # total loss
loss_collection = {}
loss_collection['vol_loss'] = vol_loss
loss_collection['sil_loss'] = sil_loss
loss_collection['normal_loss'] = normal_loss
loss_collection['dis_d_real_loss'] = dis_d_real_loss
loss_collection['dis_d_fake_loss'] = dis_d_fake_loss
loss_collection['dis_d_loss'] = dis_d_loss
loss_collection['dis_g_loss'] = dis_g_loss
loss_collection['recon_loss'] = recon_loss
loss_collection['nr_loss'] = nr_loss
loss_collection['total_loss'] = total_loss
return loss_collection
@staticmethod
def _build_optimizer(lr, recon_loss, nr_loss, total_loss, dis_loss):
log('Constructing optimizer...')
recon_var_list = [var for var in tf.trainable_variables() if not var.name.startswith('nml_rf') and not var.name.startswith('nml_dis')]
nr_var_list = [var for var in tf.trainable_variables() if var.name.startswith('nml_rf') and not var.name.startswith('nml_dis')]
all_var_list = [var for var in tf.trainable_variables() if not var.name.startswith('nml_dis')]
dis_var_list = [var for var in tf.trainable_variables() if var.name.startswith('nml_dis')]
with tf.name_scope('recon_optimizer'):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
recon_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(recon_loss, var_list=recon_var_list)
with tf.name_scope('nml_rf_optimizer'):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
dr_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(nr_loss, var_list=nr_var_list)
with tf.name_scope('all_optimizer'):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
all_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss, var_list=all_var_list)
with tf.name_scope('dis_optimizer'):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
dis_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(dis_loss, var_list=dis_var_list)
return recon_opt, dr_opt, all_opt, dis_opt
@staticmethod
def _setup_summary(sess, graph_dir, loss_collection):
loss_scalar_s = []
for lk in loss_collection:
loss_s = tf.summary.scalar('loss/%s' % (lk), loss_collection[lk])
loss_scalar_s.append(loss_s)
merged_scalar_loss = tf.summary.merge([loss_s for loss_s in loss_scalar_s])
writer = tf.summary.FileWriter(graph_dir, sess.graph)
return merged_scalar_loss, writer
def _setup_saver(self, pre_model_dir):
# load pre-trained model to fine-tune or resume training
log('Constructing saver...')
if pre_model_dir is not None:
ckpt_prev = tf.train.get_checkpoint_state(pre_model_dir)
if ckpt_prev:
saver = tf.train.Saver(var_list=[var for var in tf.trainable_variables()])
saver.restore(self.sess, ckpt_prev.model_checkpoint_path)
logger.write('Loaded model %s' % pre_model_dir)
else:
logger.write('Unable to load the pretrained model. ')
saver = tf.train.Saver(max_to_keep=1000)
return saver
@staticmethod
def _save_tuple(conc_imgs, smpl_v_volumes, mesh_volumes, dir, idx):
batch_sz = conc_imgs.shape[0]
for bi in range(batch_sz):
cv.imwrite('%s/color_%d.png' % (dir, batch_sz * idx + bi), cv.cvtColor(np.uint8(conc_imgs[bi, :, :, 0:3] * 255), cv.COLOR_BGRA2RGB))
cv.imwrite('%s/vmap_%d.png' % (dir, batch_sz * idx + bi), np.uint8(conc_imgs[bi, :, :, 3:6] * 255))
cv.imwrite('%s/mask_%d.png' % (dir, batch_sz * idx + bi), np.uint8(conc_imgs[bi, :, :, 6] * 255))
cv.imwrite('%s/normal_%d.png' % (dir, batch_sz * idx + bi), np.uint16(conc_imgs[bi, :, :, 10:13] * 32767.5 + 32767.5))
@staticmethod
def _save_results_raw_training(mesh_volume, refined_normal, orig_normal, test_dir, idx):
batch_sz = mesh_volume.shape[0]
for bi in range(batch_sz):
sio.savemat('%s/mesh_volume_%d.obj' % (test_dir, batch_sz*idx+bi),
{'mesh_volume': mesh_volume[bi, :, :, :, 0]}, do_compression=False)
for bi in range(batch_sz):
for vi in range(4):
refined_normal_ = refined_normal[bi, :, :, (3*vi):(3*vi+3)]
refined_normal_l = np.sqrt(refined_normal_[:, :, 0] * refined_normal_[:, :, 0]+
refined_normal_[:, :, 1] * refined_normal_[:, :, 1] +
refined_normal_[:, :, 2] * refined_normal_[:, :, 2])
refined_normal_ /= np.expand_dims(refined_normal_l, axis=-1)
refined_normal[bi, :, :, (3 * vi):(3 * vi + 3)] = refined_normal_
original_normal_ = orig_normal[bi, :, :, (3*vi):(3*vi+3)]
original_normal_l = np.sqrt(original_normal_[:, :, 0] * original_normal_[:, :, 0] +
original_normal_[:, :, 1] * original_normal_[:, :, 1] +
original_normal_[:, :, 2] * original_normal_[:, :, 2])
original_normal_ /= np.expand_dims(original_normal_l, axis=-1)
orig_normal[bi, :, :, (3 * vi):(3 * vi + 3)] = original_normal_
cv.imwrite('%s/normal_0_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 0:3] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_1_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 3:6] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_2_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 6:9] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_3_%d.png' % (test_dir, batch_sz * idx + bi), np.uint16(refined_normal[bi, :, :, 9:12] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_0_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 0:3] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_1_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 3:6] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_2_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 6:9] * 32767.5 + 32767.5))
cv.imwrite('%s/normal_3_%d_.png' % (test_dir, batch_sz * idx + bi), np.uint16(orig_normal[bi, :, :, 9:12] * 32767.5 + 32767.5))
@staticmethod
def _save_results_raw_testing(mesh_volume, refined_normal, orig_normal, test_dir, prefix):
batch_sz = mesh_volume.shape[0]
assert batch_sz == 1 # only use for testing
# mesh_volume = np.squeeze(mesh_volume)
for bi in range(batch_sz):
sio.savemat('%s/%s_volume_out.mat' % (test_dir, prefix),
{'mesh_volume': mesh_volume[bi, :, :, :, 0]}, do_compression=False)
for bi in range(batch_sz):
for vi in range(4):
refined_normal_ = refined_normal[bi, :, :, (3*vi):(3*vi+3)]
refined_normal_l = np.sqrt(refined_normal_[:, :, 0] * refined_normal_[:, :, 0]+
refined_normal_[:, :, 1] * refined_normal_[:, :, 1] +
refined_normal_[:, :, 2] * refined_normal_[:, :, 2])
refined_normal_ /= np.expand_dims(refined_normal_l, axis=-1)
original_normal_ = orig_normal[bi, :, :, (3*vi):(3*vi+3)]
original_normal_l = np.sqrt(original_normal_[:, :, 0] * original_normal_[:, :, 0] +
original_normal_[:, :, 1] * original_normal_[:, :, 1] +
original_normal_[:, :, 2] * original_normal_[:, :, 2])
original_normal_ /= np.expand_dims(original_normal_l, axis=-1)
cv.imwrite('%s/%s_normal_%d.png' % (test_dir, prefix, vi), np.uint16(refined_normal_ * 32767.5 + 32767.5))
cv.imwrite('%s/%s_normal_orig_%d.png' % (test_dir, prefix, vi), np.uint16(original_normal_ * 32767.5 + 32767.5))