forked from apocalypsetank/lambda-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathu_net.py
124 lines (92 loc) · 5.26 KB
/
u_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import tensorflow as tf
import tensorflow.contrib.slim as slim
import scipy.io as sio
import matplotlib.pyplot as plt
def inference(images, keep_probability, phase_train=True,
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
'scale':True,
'is_training':phase_train,
# Moving averages ends up in the trainable variables collection
'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected,slim.conv2d_transpose],
weights_initializer=slim.initializers.xavier_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return encoder_decoder(images, is_training=phase_train,
dropout_keep_prob=keep_probability,reuse=reuse)
def encoder_decoder(inputs, is_training=True,
dropout_keep_prob=0.8,
reuse=None,
scope='generator'):
end_points = {}
with tf.variable_scope(scope, 'generator', [inputs], reuse=reuse):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
##################### encoder ##############################################
net = slim.conv2d(inputs, 32, 3, stride=1, padding='SAME',scope='en_1_1')
net=slim.conv2d(net, 32, 3, stride=1, padding='SAME',scope='en_1_2')
end_points['encode_1'] = net #bs*200*512*32
net=slim.max_pool2d(net,2,stride=2,padding='SAME',scope='Pool1')
#bs*100*256*32
net = slim.conv2d(net, 64, 3, stride=1, padding='SAME', scope='en_2_1')
net = slim.conv2d(net,64, 3, stride=1, padding='SAME', scope='en_2_2')
end_points['encode_2'] = net#(bs, 50, 135, 64)
net = slim.max_pool2d(net, 2, stride=2, padding='SAME', scope='Pool2')
#(bs, 50, 128, 64)
net = slim.conv2d(net, 128, 3, stride=1, padding='SAME', scope='en_3_1')
net = slim.conv2d(net,128, 3, stride=1, padding='SAME', scope='en_3_2')
end_points['encode_3'] = net
net = slim.max_pool2d(net, 2, stride=2, padding='VALID', scope='Pool3')
#(bs, 25, 64, 128)
#
net = slim.conv2d(net, 256, 3, stride=1, padding='SAME', scope='en_4_1')
net = slim.conv2d(net,256, 3, stride=1, padding='SAME', scope='en_4_2')#(bs, 12, 34, 256)
end_points['encode_4'] = net
net = slim.max_pool2d(net, 2, stride=2, padding='SAME', scope='Pool4')
# (bs, 13, 32, 256)
net=slim.conv2d(net, 512, 3, stride=1, padding='SAME', scope='en_5_1')
net=slim.conv2d(net, 512, 3, stride=1, padding='SAME', scope='en_5_2')
end_points['encode_5'] = net
net = slim.max_pool2d(net, 2, stride=2, padding='SAME', scope='Pool5')
net=slim.conv2d(net, 1024, 3, stride=1, padding='SAME', scope='en_6')
#
net = slim.conv2d(net, 1024, 3, stride=1, padding='SAME', scope='en_7')
# ##################### encoder ##############################################
net = slim.conv2d_transpose(net, 512, 2, 2, padding='VALID')
net=tf.concat([net,end_points['encode_5']],3)
net = slim.conv2d(net, 512, 3, stride=1)
net = slim.conv2d(net, 512, 3, stride=1)
net=slim.conv2d_transpose(net,256,2,2,padding='VALID')
net=tf.concat([net,end_points['encode_4']],3)
net=slim.conv2d(net,256,3,stride=1)
net=slim.conv2d(net,256,3,stride=1)
#(bs,25,64,256)
net=slim.conv2d_transpose(net,128,2,2,padding='VALID')
net = tf.concat([net, end_points['encode_3']], 3)
net = slim.conv2d(net, 128, 3, stride=1)
net = slim.conv2d(net, 128, 3, stride=1)
#(bs, 50, 128, 128)
net=slim.conv2d_transpose(net,64,2,2,padding='SAME')
net = tf.concat([net, end_points['encode_2']], 3)
net = slim.conv2d(net, 64, 3, stride=1)
net = slim.conv2d(net, 64, 3, stride=1)
#bs,100,256,64
net = slim.conv2d_transpose(net, 32, 2, 2, padding='SAME')
net = tf.concat([net, end_points['encode_1']], 3)
net = slim.conv2d(net, 32, 3, stride=1)
net = slim.conv2d(net, 32, 3, stride=1)
# bs,200,512,32
net=slim.conv2d(net,1,1,stride=1,activation_fn=None)
net=net+inputs
return net