forked from d-ailin/GDN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
159 lines (100 loc) · 4.93 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from util.data import *
import numpy as np
from sklearn.metrics import precision_score, recall_score, roc_auc_score, f1_score
def get_full_err_scores(test_result, val_result):
np_test_result = np.array(test_result)
np_val_result = np.array(val_result)
all_scores = None
all_normals = None
feature_num = np_test_result.shape[-1]
labels = np_test_result[2, :, 0].tolist()
for i in range(feature_num):
test_re_list = np_test_result[:2,:,i]
val_re_list = np_val_result[:2,:,i]
scores = get_err_scores(test_re_list, val_re_list)
normal_dist = get_err_scores(val_re_list, val_re_list)
if all_scores is None:
all_scores = scores
all_normals = normal_dist
else:
all_scores = np.vstack((
all_scores,
scores
))
all_normals = np.vstack((
all_normals,
normal_dist
))
return all_scores, all_normals
def get_final_err_scores(test_result, val_result):
full_scores, all_normals = get_full_err_scores(test_result, val_result, return_normal_scores=True)
all_scores = np.max(full_scores, axis=0)
return all_scores
def get_err_scores(test_res, val_res):
test_predict, test_gt = test_res
val_predict, val_gt = val_res
n_err_mid, n_err_iqr = get_err_median_and_iqr(test_predict, test_gt)
test_delta = np.abs(np.subtract(
np.array(test_predict).astype(np.float64),
np.array(test_gt).astype(np.float64)
))
epsilon=1e-2
err_scores = (test_delta - n_err_mid) / ( np.abs(n_err_iqr) +epsilon)
smoothed_err_scores = np.zeros(err_scores.shape)
before_num = 3
for i in range(before_num, len(err_scores)):
smoothed_err_scores[i] = np.mean(err_scores[i-before_num:i+1])
return smoothed_err_scores
def get_loss(predict, gt):
return eval_mseloss(predict, gt)
def get_f1_scores(total_err_scores, gt_labels, topk=1):
print('total_err_scores', total_err_scores.shape)
# remove the highest and lowest score at each timestep
total_features = total_err_scores.shape[0]
# topk_indices = np.argpartition(total_err_scores, range(total_features-1-topk, total_features-1), axis=0)[-topk-1:-1]
topk_indices = np.argpartition(total_err_scores, range(total_features-topk-1, total_features), axis=0)[-topk:]
topk_indices = np.transpose(topk_indices)
total_topk_err_scores = []
topk_err_score_map=[]
# topk_anomaly_sensors = []
for i, indexs in enumerate(topk_indices):
sum_score = sum( score for k, score in enumerate(sorted([total_err_scores[index, i] for j, index in enumerate(indexs)])) )
total_topk_err_scores.append(sum_score)
final_topk_fmeas = eval_scores(total_topk_err_scores, gt_labels, 400)
return final_topk_fmeas
def get_val_performance_data(total_err_scores, normal_scores, gt_labels, topk=1):
total_features = total_err_scores.shape[0]
topk_indices = np.argpartition(total_err_scores, range(total_features-topk-1, total_features), axis=0)[-topk:]
total_topk_err_scores = []
topk_err_score_map=[]
total_topk_err_scores = np.sum(np.take_along_axis(total_err_scores, topk_indices, axis=0), axis=0)
thresold = np.max(normal_scores)
pred_labels = np.zeros(len(total_topk_err_scores))
pred_labels[total_topk_err_scores > thresold] = 1
for i in range(len(pred_labels)):
pred_labels[i] = int(pred_labels[i])
gt_labels[i] = int(gt_labels[i])
pre = precision_score(gt_labels, pred_labels)
rec = recall_score(gt_labels, pred_labels)
f1 = f1_score(gt_labels, pred_labels)
auc_score = roc_auc_score(gt_labels, total_topk_err_scores)
return f1, pre, rec, auc_score, thresold
def get_best_performance_data(total_err_scores, gt_labels, topk=1):
total_features = total_err_scores.shape[0]
# topk_indices = np.argpartition(total_err_scores, range(total_features-1-topk, total_features-1), axis=0)[-topk-1:-1]
topk_indices = np.argpartition(total_err_scores, range(total_features-topk-1, total_features), axis=0)[-topk:]
total_topk_err_scores = []
topk_err_score_map=[]
total_topk_err_scores = np.sum(np.take_along_axis(total_err_scores, topk_indices, axis=0), axis=0)
final_topk_fmeas ,thresolds = eval_scores(total_topk_err_scores, gt_labels, 400, return_thresold=True)
th_i = final_topk_fmeas.index(max(final_topk_fmeas))
thresold = thresolds[th_i]
pred_labels = np.zeros(len(total_topk_err_scores))
pred_labels[total_topk_err_scores > thresold] = 1
for i in range(len(pred_labels)):
pred_labels[i] = int(pred_labels[i])
gt_labels[i] = int(gt_labels[i])
pre = precision_score(gt_labels, pred_labels)
rec = recall_score(gt_labels, pred_labels)
auc_score = roc_auc_score(gt_labels, total_topk_err_scores)
return max(final_topk_fmeas), pre, rec, auc_score, thresold