-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathmain.py
232 lines (205 loc) · 8.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# -*- coding:utf-8 -*-
import os
import random
import math
import argparse
import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from generator import Generator
from discriminator import Discriminator
from target_lstm import TargetLSTM
from rollout import Rollout
from data_iter import GenDataIter, DisDataIter
# ================== Parameter Definition =================
parser = argparse.ArgumentParser(description='Training Parameter')
parser.add_argument('--cuda', action='store', default=None, type=int)
opt = parser.parse_args()
print(opt)
# Basic Training Paramters
SEED = 88
BATCH_SIZE = 64
TOTAL_BATCH = 200
GENERATED_NUM = 10000
POSITIVE_FILE = 'real.data'
NEGATIVE_FILE = 'gene.data'
EVAL_FILE = 'eval.data'
VOCAB_SIZE = 5000
PRE_EPOCH_NUM = 120
if opt.cuda is not None and opt.cuda >= 0:
torch.cuda.set_device(opt.cuda)
opt.cuda = True
# Genrator Parameters
g_emb_dim = 32
g_hidden_dim = 32
g_sequence_len = 20
# Discriminator Parameters
d_emb_dim = 64
d_filter_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]
d_num_filters = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160]
d_dropout = 0.75
d_num_class = 2
def generate_samples(model, batch_size, generated_num, output_file):
samples = []
for _ in range(int(generated_num / batch_size)):
sample = model.sample(batch_size, g_sequence_len).cpu().data.numpy().tolist()
samples.extend(sample)
with open(output_file, 'w') as fout:
for sample in samples:
string = ' '.join([str(s) for s in sample])
fout.write('%s\n' % string)
def train_epoch(model, data_iter, criterion, optimizer):
total_loss = 0.
total_words = 0.
for (data, target) in data_iter:#tqdm(
#data_iter, mininterval=2, desc=' - Training', leave=False):
data = Variable(data)
target = Variable(target)
if opt.cuda:
data, target = data.cuda(), target.cuda()
target = target.contiguous().view(-1)
pred = model.forward(data)
loss = criterion(pred, target)
total_loss += loss.item()
total_words += data.size(0) * data.size(1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
data_iter.reset()
return math.exp(total_loss / total_words)
def eval_epoch(model, data_iter, criterion):
total_loss = 0.
total_words = 0.
with torch.no_grad():
for (data, target) in data_iter:#tqdm(
#data_iter, mininterval=2, desc=' - Training', leave=False):
data = Variable(data)
target = Variable(target)
if opt.cuda:
data, target = data.cuda(), target.cuda()
target = target.contiguous().view(-1)
pred = model.forward(data)
loss = criterion(pred, target)
total_loss += loss.item()
total_words += data.size(0) * data.size(1)
data_iter.reset()
assert total_words > 0 # Otherwise NullpointerException
return math.exp(total_loss / total_words)
class GANLoss(nn.Module):
"""Reward-Refined NLLLoss Function for adversial training of Gnerator"""
def __init__(self):
super(GANLoss, self).__init__()
def forward(self, prob, target, reward):
"""
Args:
prob: (N, C), torch Variable
target : (N, ), torch Variable
reward : (N, ), torch Variable
"""
N = target.size(0)
C = prob.size(1)
one_hot = torch.zeros((N, C))
if prob.is_cuda:
one_hot = one_hot.cuda()
one_hot.scatter_(1, target.data.view((-1,1)), 1)
one_hot = one_hot.type(torch.ByteTensor)
one_hot = Variable(one_hot)
if prob.is_cuda:
one_hot = one_hot.cuda()
loss = torch.masked_select(prob, one_hot)
loss = loss * reward
loss = -torch.sum(loss)
return loss
def main():
random.seed(SEED)
np.random.seed(SEED)
# Define Networks
generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim, d_filter_sizes, d_num_filters, d_dropout)
target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
if opt.cuda:
generator = generator.cuda()
discriminator = discriminator.cuda()
target_lstm = target_lstm.cuda()
# Generate toy data using target lstm
print('Generating data ...')
generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM, POSITIVE_FILE)
# Load data from file
gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)
# Pretrain Generator using MLE
gen_criterion = nn.NLLLoss(reduction='sum')
gen_optimizer = optim.Adam(generator.parameters())
if opt.cuda:
gen_criterion = gen_criterion.cuda()
print('Pretrain with MLE ...')
for epoch in range(PRE_EPOCH_NUM):
loss = train_epoch(generator, gen_data_iter, gen_criterion, gen_optimizer)
print('Epoch [%d] Model Loss: %f'% (epoch, loss))
generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
print('Epoch [%d] True Loss: %f' % (epoch, loss))
# Pretrain Discriminator
dis_criterion = nn.NLLLoss(reduction='sum')
dis_optimizer = optim.Adam(discriminator.parameters())
if opt.cuda:
dis_criterion = dis_criterion.cuda()
print('Pretrain Discriminator ...')
for epoch in range(5):
generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
for _ in range(3):
loss = train_epoch(discriminator, dis_data_iter, dis_criterion, dis_optimizer)
print('Epoch [%d], loss: %f' % (epoch, loss))
# Adversarial Training
rollout = Rollout(generator, 0.8)
print('#####################################################')
print('Start Adeversatial Training...\n')
gen_gan_loss = GANLoss()
gen_gan_optm = optim.Adam(generator.parameters())
if opt.cuda:
gen_gan_loss = gen_gan_loss.cuda()
gen_criterion = nn.NLLLoss(reduction='sum')
if opt.cuda:
gen_criterion = gen_criterion.cuda()
dis_criterion = nn.NLLLoss(reduction='sum')
dis_optimizer = optim.Adam(discriminator.parameters())
if opt.cuda:
dis_criterion = dis_criterion.cuda()
for total_batch in range(TOTAL_BATCH):
## Train the generator for one step
for it in range(1):
samples = generator.sample(BATCH_SIZE, g_sequence_len)
# construct the input to the genrator, add zeros before samples and delete the last column
zeros = torch.zeros((BATCH_SIZE, 1)).type(torch.LongTensor)
if samples.is_cuda:
zeros = zeros.cuda()
inputs = Variable(torch.cat([zeros, samples.data], dim = 1)[:, :-1].contiguous())
targets = Variable(samples.data).contiguous().view((-1,))
# calculate the reward
rewards = rollout.get_reward(samples, 16, discriminator)
rewards = Variable(torch.Tensor(rewards))
rewards = torch.exp(rewards).contiguous().view((-1,))
if opt.cuda:
rewards = rewards.cuda()
prob = generator.forward(inputs)
loss = gen_gan_loss(prob, targets, rewards)
gen_gan_optm.zero_grad()
loss.backward()
gen_gan_optm.step()
if total_batch % 1 == 0 or total_batch == TOTAL_BATCH - 1:
generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
print('Batch [%d] True Loss: %f' % (total_batch, loss))
rollout.update_params()
for _ in range(4):
generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
for _ in range(2):
loss = train_epoch(discriminator, dis_data_iter, dis_criterion, dis_optimizer)
if __name__ == '__main__':
main()