-
Notifications
You must be signed in to change notification settings - Fork 2
/
test.py
60 lines (46 loc) · 1.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn.functional as F
import sys
import torch.nn as nn
import numpy as np
import os, argparse
import cv2
#from Code.lib.model_MRNet_best import MRNet
from Code.lib.model_pvt import XMSNet
from Code.utils.data import test_dataset
from Code.utils.options import opt
dataset_path = opt.test_path
# set device for test
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
print('USE GPU {}'.format(opt.gpu_id))
# load the model
model = MRNet()
model.cuda()
ch = torch.load('./Checkpoint/XMSNet/XMSNet_epoch_best.pth')
model.load_state_dict(ch)
model.eval()
# test
test_datasets = ['NJU2K', 'NLPR', 'SIP', 'STERE']
# test_datasets = ['SSD']
for dataset in test_datasets:
save_path = './test_maps/XMSNet/' + dataset + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
image_root = dataset_path + dataset + '/RGB/'
gt_root = dataset_path + dataset + '/GT/'
depth_root = dataset_path + dataset + '/depth/'
test_loader = test_dataset(image_root, gt_root, depth_root,opt.trainsize)
for i in range(test_loader.size):
image, gt,depth, name, image_for_post = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
depth = depth.cuda()
S0,S1,S2,S3,S4,S5,S6= model(image,depth)
res = S6
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
print('save img to: ', save_path + name)
cv2.imwrite(save_path + name, res * 255)
print('Test Done!')