(简体中文|English)
这些PaddleSpeech中的样例主要按数据集分类,我们主要使用的TTS数据集有:
- CSMCS (普通话单发音人)
- AISHELL3 (普通话多发音人)
- LJSpeech (英文单发音人)
- VCTK (英文多发音人)
PaddleSpeech 的 TTS 模型具有以下映射关系:
- tts0 - Tacotron2
- tts1 - TransformerTTS
- tts2 - SpeedySpeech
- tts3 - FastSpeech2
- voc0 - WaveFlow
- voc1 - Parallel WaveGAN
- voc2 - MelGAN
- voc3 - MultiBand MelGAN
- voc4 - Style MelGAN
- voc5 - HiFiGAN
- vc0 - Tacotron2 Voice Clone with GE2E
- vc1 - FastSpeech2 Voice Clone with GE2E
让我们以 FastSpeech2 + Parallel WaveGAN 和 CSMSC 数据集 为例. examples/csmsc
-
进入目录
cd examples/csmsc/voc1
-
设置环境变量
source path.sh
在你开始做任何事情之前,必须先做这步 将
MAIN_ROOT
设置为项目目录. 使用parallelwave_gan
模型作为MODEL
. -
运行
bash run.sh
这只是一个演示,请确保源数据已经准备好,并且在下一个
step
之前每个step
都运行正常.
-
进入目录
cd examples/csmsc/tts3
-
设置环境变量
source path.sh
在你开始做任何事情之前,必须先做这步 将
MAIN_ROOT
设置为项目目录. 使用fastspeech2
模型作为MODEL
。 -
运行
bash run.sh
这只是一个演示,请确保源数据已经准备好,并且在下一个
step
之前每个step
都运行正常。
run.sh
中主要包括以下步骤:
- 设置路径。
- 预处理数据集,
- 训练模型。
- 从
metadata.jsonl
中合成波形 - 从文本文件合成波形。(在声学模型中)
- 使用静态模型进行推理。(可选)
有关更多详细信息,请参见 examples 中的 README.md
本节介绍如何使用 TTS 提供的预训练模型,并对其进行推理。
TTS中的预训练模型在压缩包中提供。将其解压缩以获得如下文件夹: Acoustic Models:
checkpoint_name
├── default.yaml
├── snapshot_iter_*.pdz
├── speech_stats.npy
├── phone_id_map.txt
├── spk_id_map.txt (optimal)
└── tone_id_map.txt (optimal)
Vocoders:
checkpoint_name
├── default.yaml
├── snapshot_iter_*.pdz
└── stats.npy
default.yaml
存储用于训练模型的配置。snapshot_iter_*.pdz
是检查点文件,其中*
是它经过训练的步骤。*_stats.npy
是特征的统计文件,如果它在训练前已被标准化。phone_id_map.txt
是音素到音素 ID 的映射关系。tone_id_map.txt
是在训练声学模型之前分割音调和拼音时,音调到音调 ID 的映射关系。(例如在 csmsc/speedyspeech 的示例中)spk_id_map.txt
是多发音人声学模型中 "发音人" 到 "spk_ids" 的映射关系。
下面的示例代码显示了如何使用模型进行预测。
下面的代码显示了如何使用 FastSpeech2
模型。加载预训练模型后,使用它和 normalizer 对象构建预测对象,然后使用 fastspeech2_inferencet(phone_ids)
生成频谱图,频谱图可进一步用于使用声码器合成原始音频。
from pathlib import Path
import numpy as np
import paddle
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference
from paddlespeech.t2s.modules.normalizer import ZScore
# examples/fastspeech2/baker/frontend.py
from frontend import Frontend
# 加载预训练模型
checkpoint_dir = Path("fastspeech2_nosil_baker_ckpt_0.4")
with open(checkpoint_dir / "phone_id_map.txt", "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
with open(checkpoint_dir / "default.yaml") as f:
fastspeech2_config = CfgNode(yaml.safe_load(f))
odim = fastspeech2_config.n_mels
model = FastSpeech2(
idim=vocab_size, odim=odim, **fastspeech2_config["model"])
model.set_state_dict(
paddle.load(args.fastspeech2_checkpoint)["main_params"])
model.eval()
# 加载特征文件
stat = np.load(checkpoint_dir / "speech_stats.npy")
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
fastspeech2_normalizer = ZScore(mu, std)
# 构建预测对象
fastspeech2_inference = FastSpeech2Inference(fastspeech2_normalizer, model)
# load Chinese Frontend
frontend = Frontend(checkpoint_dir / "phone_id_map.txt")
# 构建一个中文前端
sentence = "你好吗?"
input_ids = frontend.get_input_ids(sentence, merge_sentences=True)
phone_ids = input_ids["phone_ids"]
flags = 0
# 构建预测对象加载中文前端,对中文文本前端的输出进行分段
for part_phone_ids in phone_ids:
with paddle.no_grad():
temp_mel = fastspeech2_inference(part_phone_ids)
if flags == 0:
mel = temp_mel
flags = 1
else:
mel = paddle.concat([mel, temp_mel])
下面的代码显示了如何使用 Parallel WaveGAN
模型。像上面的例子一样,加载预训练模型后,使用它和 normalizer 对象构建预测对象,然后使用 pwg_inference(mel)
生成原始音频( wav 格式)。
from pathlib import Path
import numpy as np
import paddle
import soundfile as sf
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
from paddlespeech.t2s.models.parallel_wavegan import PWGInference
from paddlespeech.t2s.modules.normalizer import ZScore
# 加载预训练模型
checkpoint_dir = Path("parallel_wavegan_baker_ckpt_0.4")
with open(checkpoint_dir / "pwg_default.yaml") as f:
pwg_config = CfgNode(yaml.safe_load(f))
vocoder = PWGGenerator(**pwg_config["generator_params"])
vocoder.set_state_dict(paddle.load(args.pwg_params))
vocoder.remove_weight_norm()
vocoder.eval()
# 加载特征文件
stat = np.load(checkpoint_dir / "pwg_stats.npy")
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
pwg_normalizer = ZScore(mu, std)
# 加载预训练模型构造预测对象
pwg_inference = PWGInference(pwg_normalizer, vocoder)
# 频谱图到波形
wav = pwg_inference(mel)
sf.write(
audio_path,
wav.numpy(),
samplerate=fastspeech2_config.fs)