-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
184 lines (175 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from constants import *
from util import pad_mask
class Model(nn.Module):
def __init__(self, args, gpt_pad_id, vocab_size, rhyme_group_size=None, glove_embeddings=None, verbose=False):
super(Model, self).__init__()
if verbose:
print(f'PAD ID is set to {gpt_pad_id}')
self.topic = args.task == 'topic'
self.formality = args.task == 'formality'
self.iambic = args.task == 'iambic'
self.rhyme = args.task == 'rhyme'
self.newline = args.task == 'newline'
self.simplify = args.task == 'simplify'
if self.topic:
self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id) # these are subwords, not words
if glove_embeddings is None:
if verbose:
print('initializing word embeddings from scratch')
self.word_embed = nn.Embedding(vocab_size, GLOVE_DIM, padding_idx=0)
else:
if verbose:
print('initializing word embeddings from glove')
self.word_embed = nn.Embedding.from_pretrained(glove_embeddings, padding_idx=0)
self.rnn = nn.LSTM(HIDDEN_DIM, RNN_DIM, num_layers=3, bidirectional=True)
self.attention_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
large_hidden_dim = HIDDEN_DIM
self.embed_key_linear = nn.Linear(large_hidden_dim, HIDDEN_DIM)
self.attention_value_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_embed_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_linear2 = nn.Linear(HIDDEN_DIM + large_hidden_dim, HIDDEN_DIM)
self.out_linear3 = nn.Linear(HIDDEN_DIM, 1)
self.nonlinear = nn.ReLU()
elif self.formality:
self.marian_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=0) # 0 in marian is ''
self.rnn = nn.LSTM(HIDDEN_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False, dropout=0.5) # want it to be causal so we can learn all positions
self.out_linear = nn.Linear(HIDDEN_DIM, 1)
###################
elif self.simplify: # BART models use built-in pad token, vocab size stays the same!
if glove_embeddings is None:
if verbose:
print('initializing word embeddings from scratch')
self.bart_embed = nn.Embedding(vocab_size, EMBED_DIM, padding_idx=gpt_pad_id) # gpt_pad_id = bart pad_token_id (in data.py)
else:
# if verbose:
# print('initializing word embeddings from glove')
if isinstance(glove_embeddings, str):
glove_embeddings = np.load(glove_embeddings)
self.bart_embed = nn.Embedding.from_pretrained(torch.from_numpy(glove_embeddings), padding_idx=1)
# self.bart_embed
if 'bidirectional' in args and args.bidirectional:
self.rnn = nn.LSTM(EMBED_DIM, HIDDEN_DIM//2, num_layers=3, bidirectional=True, dropout=0.1)
else:
self.rnn = nn.LSTM(EMBED_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False, dropout=0.1) # want it to be causal so we can learn all positions
self.out_linear = nn.Linear(HIDDEN_DIM, 1)
###################
elif self.iambic:
self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id)
self.rnn = nn.LSTM(HIDDEN_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False, dropout=0) # want it to be causal so we can learn all positions
self.out_linear = nn.Linear(HIDDEN_DIM, 1)
elif self.rhyme:
self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id) # these are subwords, not words
self.word_embed = nn.Embedding(rhyme_group_size+1, GLOVE_DIM, padding_idx=0) # this embedding for future words will actually embed the rhyme group idx
self.rnn = nn.LSTM(HIDDEN_DIM, RNN_DIM, num_layers=3, bidirectional=True)
self.attention_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
large_hidden_dim = HIDDEN_DIM + COUNT_SYLLABLE_DIM
self.embed_key_linear = nn.Linear(large_hidden_dim, HIDDEN_DIM)
self.attention_value_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_embed_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_linear2 = nn.Linear(HIDDEN_DIM + large_hidden_dim, HIDDEN_DIM)
self.out_linear3 = nn.Linear(HIDDEN_DIM, 1)
self.count_syllable_embed = nn.Embedding(MAX_COUNT_SYLLABLE_DIST+1, COUNT_SYLLABLE_DIM)
self.nonlinear = nn.ReLU()
elif self.newline:
self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id) # these are subwords, not words
self.rnn = nn.LSTM(HIDDEN_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False)
self.count_syllable_embed = nn.Embedding(MAX_COUNT_SYLLABLE_DIST+1, COUNT_SYLLABLE_DIM)
self.out_linear = nn.Linear(HIDDEN_DIM + COUNT_SYLLABLE_DIM, HIDDEN_DIM)
self.out_linear2 = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
self.out_linear3 = nn.Linear(HIDDEN_DIM, 1)
self.nonlinear = nn.ReLU()
else:
raise NotImplementedError # TODO honestly this can/should be refactored into different models
def forward(self, inputs, lengths=None, future_words=None, log_probs=None, syllables_to_go=None, future_word_num_syllables=None, rhyme_group_index=None, run_classifier=False):
"""
inputs: token ids, batch x seq, right-padded with 0s
lengths: lengths of inputs; batch
future_words: batch x N words to check if not predict next token, else batch
log_probs: N
syllables_to_go: batch
"""
if self.topic:
inputs = self.gpt_embed(inputs) # batch x seq x 300
inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
rnn_output, _ = self.rnn(inputs)
rnn_output, _ = pad_packed_sequence(rnn_output)
rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
hidden = rnn_output
attention_mask = pad_mask(lengths).permute(1, 0) # batch x seq
embed = self.word_embed(future_words) # batch x N x 300
embed_query = self.embed_key_linear(embed)
attention_tensor = self.attention_linear(hidden).unsqueeze(2) * embed_query.unsqueeze(1) # batch x seq x N x 300
attention_weights = F.softmax(attention_tensor.sum(dim=3), dim=1) # batch x seq x N
attention_weights = attention_weights * attention_mask.unsqueeze(2)
hidden = self.attention_value_linear(hidden)
weighted_hidden = (hidden.unsqueeze(2) * attention_weights.unsqueeze(3)).sum(dim=1) # batch x seq x N x 768 -> batch x N x 768
unnormalized_scores = (self.out_linear(weighted_hidden) * self.out_embed_linear(embed)) # batch x N x 300
unnormalized_scores = torch.cat([unnormalized_scores, embed], dim=2)
unnormalized_scores = self.nonlinear(self.out_linear2(self.nonlinear(unnormalized_scores)))
unnormalized_scores = self.out_linear3(unnormalized_scores)
scores = unnormalized_scores.squeeze(2) - log_probs.unsqueeze(0)
return scores # batch x N of normalized scores or batch x
elif self.formality:
inputs = self.marian_embed(inputs)
inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
rnn_output, _ = self.rnn(inputs)
rnn_output, _ = pad_packed_sequence(rnn_output)
rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
return self.out_linear(rnn_output).squeeze(2)
###################
elif self.simplify:
inputs = self.bart_embed(inputs) # batch x seq x hidden_dim
inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
rnn_output, _ = self.rnn(inputs)
rnn_output, _ = pad_packed_sequence(rnn_output)
rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
return self.out_linear(rnn_output).squeeze(2)
###################
elif self.iambic:
inputs = self.gpt_embed(inputs)
inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
rnn_output, _ = self.rnn(inputs)
rnn_output, _ = pad_packed_sequence(rnn_output)
rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
return self.out_linear(rnn_output).squeeze(2)
elif self.rhyme:
inputs = self.gpt_embed(inputs) # batch x seq x 300
inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
rnn_output, _ = self.rnn(inputs)
rnn_output, _ = pad_packed_sequence(rnn_output)
rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
hidden = rnn_output
attention_mask = pad_mask(lengths).permute(1, 0) # batch x seq
embed = self.word_embed(future_words) # batch x N x 300
embedded_syllables_to_go = self.count_syllable_embed(syllables_to_go).unsqueeze(1).expand(-1, embed.shape[1], -1) # batch x N x 100
auxiliary_embed = embedded_syllables_to_go
embed_query = self.embed_key_linear(torch.cat([embed, auxiliary_embed], dim=2))
attention_tensor = self.attention_linear(hidden).unsqueeze(2) * embed_query.unsqueeze(1) # batch x seq x N x 300
attention_weights = F.softmax(attention_tensor.sum(dim=3), dim=1) # batch x seq x N
attention_weights = attention_weights * attention_mask.unsqueeze(2)
hidden = self.attention_value_linear(hidden)
weighted_hidden = (hidden.unsqueeze(2) * attention_weights.unsqueeze(3)).sum(dim=1) # batch x seq x N x 768 -> batch x N x 768
unnormalized_scores = (self.out_linear(weighted_hidden) * self.out_embed_linear(embed)) # batch x N x 300
unnormalized_scores = torch.cat([unnormalized_scores, embed, auxiliary_embed], dim=2)
unnormalized_scores = self.nonlinear(self.out_linear2(self.nonlinear(unnormalized_scores)))
unnormalized_scores = self.out_linear3(unnormalized_scores)
scores = unnormalized_scores.squeeze(2) - log_probs.unsqueeze(0)
return scores # batch x N of normalized scores or batch x
elif self.newline:
inputs = self.gpt_embed(inputs) # batch x seq x 300
inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
rnn_output, _ = self.rnn(inputs)
rnn_output, _ = pad_packed_sequence(rnn_output)
rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
hidden = torch.cat([rnn_output, self.count_syllable_embed(syllables_to_go).unsqueeze(1).expand(-1, rnn_output.shape[1], -1)], dim=2)
return self.out_linear3(self.nonlinear(self.out_linear2(self.nonlinear(self.out_linear(hidden))))).squeeze(2)
else:
raise NotImplementedError