-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdataset.py
993 lines (863 loc) · 36.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
import mmcv
import numpy as np
import pyquaternion
import tempfile
from nuscenes.utils.data_classes import Box as NuScenesBox
from os import path as osp
from mmdet.datasets import DATASETS
from mmdet3d.core import show_result
from mmdet3d.core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
from mmdet3d.core.bbox import get_box_type
from mmdet3d.datasets.pipelines import Compose
from torch.utils.data import Dataset
import torch
from pyquaternion import Quaternion
import copy
from typing import List, Tuple, Union
@DATASETS.register_module()
class NuScenesTrackDataset(Dataset):
r"""NuScenes Dataset.
This class serves as the API for experiments on the NuScenes Dataset.
Please refer to `NuScenes Dataset <https://www.nuscenes.org/download>`_
for data downloading.
Args:
ann_file (str): Path of annotation file.
pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None.
data_root (str): Path of dataset root.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
load_interval (int, optional): Interval of loading the dataset. It is
used to uniformly sample the dataset. Defaults to 1.
with_velocity (bool, optional): Whether include velocity prediction
into the experiments. Defaults to True.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
box_type_3d (str, optional): Type of 3D box of this dataset.
Based on the `box_type_3d`, the dataset will encapsulate the box
to its original format then converted them to `box_type_3d`.
Defaults to 'LiDAR' in this dataset. Available options includes.
- 'LiDAR': Box in LiDAR coordinates.
- 'Depth': Box in depth coordinates, usually for indoor dataset.
- 'Camera': Box in camera coordinates.
filter_empty_gt (bool, optional): Whether to filter empty GT.
Defaults to True.
test_mode (bool, optional): Whether the dataset is in test mode.
Defaults to False.
eval_version (bool, optional): Configuration version of evaluation.
Defaults to 'detection_cvpr_2019'.
use_valid_flag (bool): Whether to use `use_valid_flag` key in the info
file as mask to filter gt_boxes and gt_names. Defaults to False.
"""
NameMapping = {
'movable_object.barrier': 'barrier',
'vehicle.bicycle': 'bicycle',
'vehicle.bus.bendy': 'bus',
'vehicle.bus.rigid': 'bus',
'vehicle.car': 'car',
'vehicle.construction': 'construction_vehicle',
'vehicle.motorcycle': 'motorcycle',
'human.pedestrian.adult': 'pedestrian',
'human.pedestrian.child': 'pedestrian',
'human.pedestrian.construction_worker': 'pedestrian',
'human.pedestrian.police_officer': 'pedestrian',
'movable_object.trafficcone': 'traffic_cone',
'vehicle.trailer': 'trailer',
'vehicle.truck': 'truck'
}
DefaultAttribute = {
'car': 'vehicle.parked',
'pedestrian': 'pedestrian.moving',
'trailer': 'vehicle.parked',
'truck': 'vehicle.parked',
'bus': 'vehicle.moving',
'motorcycle': 'cycle.without_rider',
'construction_vehicle': 'vehicle.parked',
'bicycle': 'cycle.without_rider',
'barrier': '',
'traffic_cone': '',
}
AttrMapping = {
'cycle.with_rider': 0,
'cycle.without_rider': 1,
'pedestrian.moving': 2,
'pedestrian.standing': 3,
'pedestrian.sitting_lying_down': 4,
'vehicle.moving': 5,
'vehicle.parked': 6,
'vehicle.stopped': 7,
}
AttrMapping_rev = [
'cycle.with_rider',
'cycle.without_rider',
'pedestrian.moving',
'pedestrian.standing',
'pedestrian.sitting_lying_down',
'vehicle.moving',
'vehicle.parked',
'vehicle.stopped',
]
CLASSES = ['car', 'truck', 'bus', 'trailer',
'motorcycle', 'bicycle', 'pedestrian']
def __init__(self,
ann_file,
pipeline_single=None,
pipeline_post=None,
data_root=None,
classes=None,
load_interval=1,
with_velocity=True,
modality=None,
box_type_3d='LiDAR',
filter_empty_gt=True,
test_mode=False,
eval_version='detection_cvpr_2019',
sample_mode='fixed_interval',
sample_interval=1,
num_frames_per_sample=3,
use_valid_flag=True, **kwargs,
):
self.load_interval = load_interval
self.use_valid_flag = use_valid_flag
super().__init__()
self.data_root = data_root
self.ann_file = ann_file
self.test_mode = test_mode
self.modality = modality
self.filter_empty_gt = filter_empty_gt
self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
self.CLASSES = self.get_classes(classes)
self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}
self.data_infos = self.load_annotations(self.ann_file)
self.sample_mode = sample_mode
self.sample_interval = sample_interval
self.num_frames_per_sample = num_frames_per_sample
if not self.test_mode:
self.num_frames_per_sample += 1
self.num_samples = len(self.data_infos) - (self.num_frames_per_sample - 1) * \
self.sample_interval
if pipeline_single is not None:
self.pipeline_single = Compose(pipeline_single)
if pipeline_post is not None:
self.pipeline_post = Compose(pipeline_post)
# set group flag for the sampler
if not self.test_mode:
self._set_group_flag()
self.with_velocity = with_velocity
self.eval_version = eval_version
from nuscenes.eval.detection.config import config_factory
self.eval_detection_configs = config_factory(self.eval_version)
if self.modality is None:
self.modality = dict(
use_camera=False,
use_lidar=True,
use_radar=False,
use_map=False,
use_external=False,
)
def __len__(self):
"""Return the length of data infos.
Returns:
int: Length of data infos.
"""
return self.num_samples
@classmethod
def get_classes(cls, classes=None):
"""Get class names of current dataset.
Args:
classes (Sequence[str] | str | None): If classes is None, use
default CLASSES defined by builtin dataset. If classes is a
string, take it as a file name. The file contains the name of
classes where each line contains one class name. If classes is
a tuple or list, override the CLASSES defined by the dataset.
Return:
list[str]: A list of class names.
"""
if classes is None:
return cls.CLASSES
if isinstance(classes, str):
# take it as a file path
class_names = mmcv.list_from_file(classes)
elif isinstance(classes, (tuple, list)):
class_names = classes
else:
raise ValueError(f'Unsupported type {type(classes)} of classes.')
return class_names
def get_cat_ids(self, idx):
"""Get category distribution of single scene.
Args:
idx (int): Index of the data_info.
Returns:
dict[list]: for each category, if the current scene
contains such boxes, store a list containing idx,
otherwise, store empty list.
"""
info = self.data_infos[idx]
if self.use_valid_flag:
mask = info['valid_flag']
gt_names = set(info['gt_names'][mask])
else:
gt_names = set(info['gt_names'])
cat_ids = []
for name in gt_names:
if name in self.CLASSES:
cat_ids.append(self.cat2id[name])
return cat_ids
def load_annotations(self, ann_file):
"""Load annotations from ann_file.
Args:
ann_file (str): Path of the annotation file.
Returns:
list[dict]: List of annotations sorted by timestamps.
"""
data = mmcv.load(ann_file)
data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
data_infos = data_infos[::self.load_interval]
self.metadata = data['metadata']
self.version = self.metadata['version']
if not self.test_mode:
return data_infos
return data_infos
def get_data_info(self, index):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Data information that will be passed to the data \
preprocessing pipelines. It includes the following keys:
- sample_idx (str): Sample index.
- pts_filename (str): Filename of point clouds.
- sweeps (list[dict]): Infos of sweeps.
- timestamp (float): Sample timestamp.
- img_filename (str, optional): Image filename.
- lidar2img (list[np.ndarray], optional): Transformations \
from lidar to different cameras.
- ann_info (dict): Annotation info.
"""
info = self.data_infos[index]
# standard protocal modified from SECOND.Pytorch
input_dict = dict(
sample_idx=info['token'],
pts_filename=info['lidar_path'],
sweeps=info['sweeps'],
timestamp=info['timestamp'] / 1e6,
radar=info['radars'],
)
l2e_r = info['lidar2ego_rotation']
l2e_t = info['lidar2ego_translation']
e2g_r = info['ego2global_rotation']
e2g_t = info['ego2global_translation']
l2e_r_mat = Quaternion(l2e_r).rotation_matrix
e2g_r_mat = Quaternion(e2g_r).rotation_matrix
l2g_r_mat = l2e_r_mat.T @ e2g_r_mat.T # [3, 3]
l2g_t = l2e_t @ e2g_r_mat.T + e2g_t # [1, 3]
# previously, for using R and t from info[''],
# you should points @ info['lidar2ego_rotation'].T + info['lidar2ego_translation']
# but in https://github.com/a1600012888/MUTR3D/blob/main/plugin/track/models/tracker.py#L209
# I am directly calling points @ R + t, rather than points @ R.T + t.
# so need some process metioned two lines above.
input_dict.update(
dict(
l2g_r_mat=l2g_r_mat.astype(np.float32),
l2g_t=l2g_t.astype(np.float32)))
if self.modality['use_camera']:
image_paths = []
lidar2img_rts = []
intrinsics = []
extrinsics = []
for cam_type, cam_info in info['cams'].items():
image_paths.append(cam_info['data_path'])
# obtain lidar to image transformation matrix
lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
lidar2cam_t = cam_info[
'sensor2lidar_translation'] @ lidar2cam_r.T
lidar2cam_rt = np.eye(4)
lidar2cam_rt[:3, :3] = lidar2cam_r.T
lidar2cam_rt[3, :3] = -lidar2cam_t
intrinsic = cam_info['cam_intrinsic']
viewpad = np.eye(4)
viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
lidar2img_rt = (viewpad @ lidar2cam_rt.T)
lidar2img_rts.append(lidar2img_rt)
intrinsics.append(viewpad)
extrinsics.append(lidar2cam_rt.T)
input_dict.update(
dict(
img_filename=image_paths,
lidar2img=lidar2img_rts,
intrinsic=intrinsics,
extrinsic=extrinsics,
))
if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
return input_dict
def get_ann_info(self, index):
"""Get annotation info according to the given index.
Args:
index (int): Index of the annotation data to get.
Returns:
dict: Annotation information consists of the following keys:
- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): \
3D ground truth bboxes
- gt_labels_3d (np.ndarray): Labels of ground truths.
- gt_names (list[str]): Class names of ground truths.
"""
info = self.data_infos[index]
# filter out bbox containing no points
if self.use_valid_flag:
mask = info['valid_flag']
else:
mask = info['num_lidar_pts'] > 0
gt_bboxes_3d = info['gt_boxes'][mask]
gt_names_3d = info['gt_names'][mask]
instance_inds = np.array(info['instance_inds'], dtype=np.int)[mask]
gt_labels_3d = []
for cat in gt_names_3d:
if cat in self.CLASSES:
gt_labels_3d.append(self.CLASSES.index(cat))
else:
gt_labels_3d.append(-1)
gt_labels_3d = np.array(gt_labels_3d)
if self.with_velocity:
gt_velocity = info['gt_velocity'][mask]
nan_mask = np.isnan(gt_velocity[:, 0])
gt_velocity[nan_mask] = [0.0, 0.0]
gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)
# the nuscenes box center is [0.5, 0.5, 0.5], we change it to be
# the same as KITTI (0.5, 0.5, 0)
gt_bboxes_3d = LiDARInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
gt_names=gt_names_3d,
instance_inds=instance_inds)
return anns_results
def pre_pipeline(self, results):
"""Initialization before data preparation.
Args:
results (dict): Dict before data preprocessing.
- img_fields (list): Image fields.
- bbox3d_fields (list): 3D bounding boxes fields.
- pts_mask_fields (list): Mask fields of points.
- pts_seg_fields (list): Mask fields of point segments.
- bbox_fields (list): Fields of bounding boxes.
- mask_fields (list): Fields of masks.
- seg_fields (list): Segment fields.
- box_type_3d (str): 3D box type.
- box_mode_3d (str): 3D box mode.
"""
results['img_fields'] = []
results['bbox3d_fields'] = []
results['pts_mask_fields'] = []
results['pts_seg_fields'] = []
results['bbox_fields'] = []
results['mask_fields'] = []
results['seg_fields'] = []
results['box_type_3d'] = self.box_type_3d
results['box_mode_3d'] = self.box_mode_3d
def _get_sample_range(self, start_idx):
# take default sampling method for normal dataset.
assert self.sample_mode in ['fixed_interval', 'random_interval'], 'invalid sample mode: {}'.format(self.sample_mode)
if self.sample_mode == 'fixed_interval':
sample_interval = self.sample_interval
elif self.sample_mode == 'random_interval':
sample_interval = np.random.randint(1, self.sample_interval + 1)
default_range = start_idx, start_idx + (self.num_frames_per_sample - 1) * sample_interval + 1, sample_interval
return default_range
def pre_continuous_frames(self, start, end, interval=1):
targets = []
images = []
for i in range(start, end, interval):
img_i, targets_i = self._pre_single_frame(i)
images.append(img_i)
targets.append(targets_i)
return images, targets
def prepare_train_data_single(self, index):
"""Training data preparation.
Args:
index (int): Index for accessing the target data.
Returns:
dict: Training data dict of the corresponding index.
"""
input_dict = self.get_data_info(index)
if input_dict is None:
return None
self.pre_pipeline(input_dict)
example = self.pipeline_single(input_dict)
example['instance_inds'] = example['ann_info']['instance_inds']
if self.filter_empty_gt and \
(example is None or
~(example['gt_labels_3d'] != -1).any()):
return None
return example
def prepare_train_data(self, index):
start, end, interval = self._get_sample_range(index)
ret = None
for i in range(start, end, interval):
data_i = self.prepare_train_data_single(i)
if data_i is None:
return None
if ret is None:
ret = {key: [] for key in data_i.keys()}
for key, value in data_i.items():
ret[key].append(value)
ret = self.pipeline_post(ret)
return ret
def prepare_test_data_single(self, index):
"""Prepare data for testing.
Args:
index (int): Index for accessing the target data.
Returns:
dict: Testing data dict of the corresponding index.
"""
input_dict = self.get_data_info(index)
if input_dict is None:
return None
self.pre_pipeline(input_dict)
example = self.pipeline_single(input_dict)
return example
def prepare_test_data(self, index):
start, end, interval = self._get_sample_range(index)
ret = None
for i in range(start, end, interval):
data_i = self.prepare_test_data_single(i)
if ret is None:
ret = {key: [] for key in data_i.keys()}
for key, value in data_i.items():
ret[key].append(value)
ret = self.pipeline_post(ret)
return ret
def _rand_another(self, idx):
"""Randomly get another item with the same flag.
Returns:
int: Another index of item with the same flag.
"""
pool = np.where(self.flag == self.flag[idx])[0]
return np.random.choice(pool)
def __getitem__(self, idx):
"""Get item from infos according to the given index.
Returns:
dict: Data dictionary of the corresponding index.
"""
if self.test_mode:
return self.prepare_test_data(idx)
while True:
data = self.prepare_train_data(idx)
if data is None:
idx = self._rand_another(idx)
continue
return data
def _format_bbox(self, results, jsonfile_prefix=None):
"""Convert the results to the standard format.
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of the output jsonfile.
You can specify the output directory/filename by
modifying the jsonfile_prefix. Default: None.
Returns:
str: Path of the output json file.
"""
nusc_annos = {}
mapped_class_names = self.CLASSES
print('Start to convert detection format...')
for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
annos = []
sample_token = self.data_infos[sample_id]['token']
if det is None:
nusc_annos[sample_token] = annos
continue
boxes = output_to_nusc_box(det)
boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
mapped_class_names,
self.eval_detection_configs,
self.eval_version)
for i, box in enumerate(boxes):
name = mapped_class_names[box.label]
if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
if name in [
'car',
'construction_vehicle',
'bus',
'truck',
'trailer',
]:
attr = 'vehicle.moving'
elif name in ['bicycle', 'motorcycle']:
attr = 'cycle.with_rider'
else:
attr = NuScenesTrackDataset.DefaultAttribute[name]
else:
if name in ['pedestrian']:
attr = 'pedestrian.standing'
elif name in ['bus']:
attr = 'vehicle.stopped'
else:
attr = NuScenesTrackDataset.DefaultAttribute[name]
center_ = box.center.tolist()
# change from ground height to center height
center_[2] = center_[2] + (box.wlh.tolist()[2] / 2.0)
nusc_anno = dict(
sample_token=sample_token,
translation=box.center.tolist(),
size=box.wlh.tolist(),
rotation=box.orientation.elements.tolist(),
velocity=box.velocity[:2].tolist(),
tracking_name=name,
attribute_name=attr,
tracking_score=box.score,
tracking_id=box.token,)
annos.append(nusc_anno)
nusc_annos[sample_token] = annos
nusc_submissions = {
'meta': self.modality,
'results': nusc_annos,
}
mmcv.mkdir_or_exist(jsonfile_prefix)
res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
print('Results writes to', res_path)
mmcv.dump(nusc_submissions, res_path)
return res_path
def _evaluate_single(self,
result_path,
logger=None,
metric='bbox',
result_name='pts_bbox'):
"""Evaluation for a single model in nuScenes protocol.
Args:
result_path (str): Path of the result file.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
metric (str): Metric name used for evaluation. Default: 'bbox'.
result_name (str): Result name in the metric prefix.
Default: 'pts_bbox'.
Returns:
dict: Dictionary of evaluation details.
"""
from nuscenes import NuScenes
from nuscenes.eval.detection.evaluate import NuScenesEval
output_dir = osp.join(*osp.split(result_path)[:-1])
eval_set_map = {
'v1.0-mini': 'mini_val',
'v1.0-trainval': 'val',
}
from nuscenes.eval.tracking.evaluate import TrackingEval
from nuscenes.eval.common.config import config_factory as track_configs
cfg = track_configs("tracking_nips_2019")
nusc_eval = TrackingEval(
config=cfg,
result_path=result_path,
eval_set=eval_set_map[self.version],
output_dir=output_dir,
verbose=True,
nusc_version=self.version,
nusc_dataroot=self.data_root
)
metrics = nusc_eval.main()
# record metrics
metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
print(metrics)
detail = dict()
metric_prefix = f'{result_name}_NuScenes'
keys = ['amota', 'amotp', 'recall', 'motar',
'gt', 'mota', 'motp', 'mt', 'ml', 'faf',
'tp', 'fp', 'fn', 'ids', 'frag', 'tid', 'lgd']
for key in keys:
detail['{}/{}'.format(metric_prefix, key)] = metrics[key]
return detail
def format_results(self, results, jsonfile_prefix=None):
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: Returns (result_files, tmp_dir), where `result_files` is a \
dict containing the json filepaths, `tmp_dir` is the temporal \
directory created for saving json files when \
`jsonfile_prefix` is not specified.
"""
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
if jsonfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
jsonfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
result_files = self._format_bbox(results, jsonfile_prefix)
return result_files, tmp_dir
def evaluate(self,
results,
metric='bbox',
logger=None,
jsonfile_prefix=None,
result_names=['pts_bbox'],
show=False,
out_dir=None,
pipeline=None):
"""Evaluation in nuScenes protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
show (bool): Whether to visualize.
Default: False.
out_dir (str): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str, float]: Results of each evaluation metric.
"""
result_files, tmp_dir = self.format_results(results, jsonfile_prefix)
if isinstance(result_files, dict):
results_dict = dict()
for name in result_names:
print('Evaluating bboxes of {}'.format(name))
ret_dict = self._evaluate_single(result_files[name])
results_dict.update(ret_dict)
elif isinstance(result_files, str):
results_dict = self._evaluate_single(result_files)
if tmp_dir is not None:
tmp_dir.cleanup()
if show:
self.show(results, out_dir, pipeline=pipeline)
return results_dict
def _build_default_pipeline(self):
"""Build the default pipeline for this dataset."""
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
file_client_args=dict(backend='disk')),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=dict(backend='disk')),
dict(
type='DefaultFormatBundle3D',
class_names=self.CLASSES,
with_label=False),
dict(type='Collect3D', keys=['points'])
]
return Compose(pipeline)
def show(self, results, out_dir, show=True, pipeline=None):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
show (bool): Visualize the results online.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
"""
assert out_dir is not None, 'Expect out_dir, got none.'
pipeline = self._get_pipeline(pipeline)
for i, result in enumerate(results):
if 'pts_bbox' in result.keys():
result = result['pts_bbox']
data_info = self.data_infos[i]
pts_path = data_info['lidar_path']
file_name = osp.split(pts_path)[-1].split('.')[0]
points = self._extract_data(i, pipeline, 'points').numpy()
# for now we convert points into depth mode
points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
Coord3DMode.DEPTH)
inds = result['scores_3d'] > 0.1
gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
Box3DMode.DEPTH)
pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
Box3DMode.DEPTH)
show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
file_name, show)
def _set_group_flag(self):
"""Set flag according to image aspect ratio.
Images with aspect ratio greater than 1 will be set as group 1,
otherwise group 0. In 3D datasets, they are all the same, thus are all
zeros.
"""
self.flag = np.zeros(len(self), dtype=np.uint8)
class NuScenesTrackingBox(NuScenesBox):
def __init__(self,
center: List[float],
size: List[float],
orientation: Quaternion,
label: int = np.nan,
score: float = np.nan,
velocity: Tuple = (np.nan, np.nan, np.nan),
name: str = None,
token: str = None,
):
"""
:param center: Center of box given as x, y, z.
:param size: Size of box in width, length, height.
:param orientation: Box orientation.
:param label: Integer label, optional.
:param score: Classification score, optional.
:param velocity: Box velocity in x, y, z direction.
:param name: Box name, optional. Can be used e.g. for denote category name.
:param token: Unique string identifier from DB.
"""
super(NuScenesTrackingBox, self).__init__(center, size, orientation, label,
score, velocity, name, token)
def rotate(self, quaternion: Quaternion) -> None:
self.center = np.dot(quaternion.rotation_matrix, self.center)
self.orientation = quaternion * self.orientation
self.velocity = np.dot(quaternion.rotation_matrix, self.velocity)
def copy(self) -> 'NuScenesTrackingBox':
return copy.deepcopy(self)
def output_to_nusc_box(detection):
"""Convert the output to the box class in the nuScenes.
Args:
detection (dict): Detection results.
- boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
- scores_3d (torch.Tensor): Detection scores.
- labels_3d (torch.Tensor): Predicted box labels.
tracking (bool): if convert for tracking evaluation
Returns:
list[:obj:`NuScenesBox`]: List of NuScenesTrackingBoxes.
"""
box3d = detection['boxes_3d']
scores = detection['scores_3d'].numpy()
# overwrite the scores with the tracking scores
if 'track_scores' in detection.keys() and detection['track_scores'] is not None:
scores = detection['track_scores'].numpy()
labels = detection['labels_3d'].numpy()
if 'track_ids' in detection.keys() and detection['track_ids'] is not None:
track_ids = detection['track_ids']
else:
track_ids = [None for _ in range(len(box3d))]
box_gravity_center = box3d.gravity_center.numpy()
box_dims = box3d.dims.numpy()
box_yaw = box3d.yaw.numpy()
# TODO: check whether this is necessary
# with dir_offset & dir_limit in the head
box_yaw = -box_yaw - np.pi / 2
box_list = []
for i in range(len(box3d)):
quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
velocity = (*box3d.tensor[i, 7:9], 0.0)
# velo_val = np.linalg.norm(box3d[i, 7:9])
# velo_ori = box3d[i, 6]
# velocity = (
# velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
box = NuScenesTrackingBox(
box_gravity_center[i],
box_dims[i],
quat,
label=labels[i],
score=scores[i],
velocity=velocity,
token=str(track_ids[i]))
box_list.append(box)
return box_list
def lidar_nusc_box_to_global(info,
boxes,
classes,
eval_configs,
eval_version='detection_cvpr_2019'):
"""Convert the box from ego to global coordinate.
Args:
info (dict): Info for a specific sample data, including the
calibration information.
boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
classes (list[str]): Mapped classes in the evaluation.
eval_configs (object): Evaluation configuration object.
eval_version (str): Evaluation version.
Default: 'detection_cvpr_2019'
Returns:
list: List of standard NuScenesBoxes in the global
coordinate.
"""
box_list = []
for box in boxes:
# Move box to ego vehicle coord system
box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
box.translate(np.array(info['lidar2ego_translation']))
# filter det in ego.
cls_range_map = eval_configs.class_range
radius = np.linalg.norm(box.center[:2], 2)
det_range = cls_range_map[classes[box.label]]
if radius > det_range:
continue
# Move box to global coord system
box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
box.translate(np.array(info['ego2global_translation']))
box_list.append(box)
return box_list
def _test():
file_client_args = dict(backend='disk')
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
dataset_type = 'NuScenesTrackDataset'
data_root = 'data/nuscenes/'
class_names = [
'car', 'truck', 'bus', 'trailer',
'motorcycle', 'bicycle', 'pedestrian',
]
input_modality = dict(
use_lidar=True,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False)
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(type='LoadMultiViewImageFromFiles'),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=1,
use_dim=[0, 1, 2, 3, 4],
file_client_args=file_client_args,
pad_empty_sweeps=True,
remove_close=True),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='Normalize3D', **img_norm_cfg),
dict(type='Pad3D', size_divisor=32)]
train_pipeline_post = [
dict(type='FormatBundle3DTrack', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d', 'img'])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'track_infos_train.pkl', # this is user generated
pipeline_single=train_pipeline,
pipeline_post=train_pipeline_post,
classes=class_names,
modality=input_modality,
test_mode=False,
use_valid_flag=True,
box_type_3d='LiDAR'),)
from plugin.track.pipeline import FormatBundle3DTrack
from mmdet3d.datasets import build_dataset
dataset = build_dataset(data['train'])
from IPython import embed
embed()
if __name__ == '__main__':
_test()