forked from thomkav/building_segmentation_cv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·386 lines (306 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
'''
# ------------------------------------------
# ------------------------------------------
# Train Modified FastFCN
# ------------------------------------------
# ------------------------------------------
'''
import argparse
import os
import numpy as np
import torch
import pipeline.criterion as Criterion
from pipeline.load import get_dataloader
import pipeline.network as Network
from datetime import datetime, timedelta
import FastFCN
import pdb
from sklearn.metrics import jaccard_score
import LovaszSoftmax.pytorch.lovasz_losses as L
class ObjectView:
'''
Helper class to access dict values as attributes.
Replaces command-line arg-parse options.
'''
def __init__(self, d):
self.__dict__ = d
def layer_gen(model):
yield from reversed(list(model.pretrained.layer4.children()))
yield from reversed(list(model.pretrained.layer3.children()))
yield from reversed(list(model.pretrained.layer2.children()))
yield from reversed(list(model.pretrained.layer1.children()))
def save_model(model, experiment_name=None):
'''
Save a model to the correct dictionary
'''
model_dir = os.path.join('models', experiment_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_path = os.path.join(model_dir, '{}_m.pt'.format(experiment_name))
torch.save(model.state_dict(), model_path)
return None
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, experiment_name, use_lovasz=False):
if use_lovasz:
score = val_loss
else:
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, experiment_name)
elif score < self.best_score + self.delta:
self.counter += 1
print('Validaton Loss={}, best score = {}. \nEarlyStopping counter: {} out of {}'.format(score, self.best_score, self.counter, self.patience))
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, experiment_name)
self.counter = 0
def save_checkpoint(self, val_loss, model, experiment_name):
'''Saves model when validation loss decrease.'''
if self.verbose:
print('Validation loss decreased ({} --> {}). Saving model ...'.format(self.val_loss_min, val_loss))
save_model(model, experiment_name=experiment_name + '_chkpt')
self.val_loss_min = val_loss
def train_fastfcn_mod(
options=None, num_epochs=1, reporting_int=5, batch_size=8,
experiment_name=None, train_path=None, batch_trim=None, tier2=None
):
'''
Compile and train the modified FastFCN implementation.
'''
torch.cuda.empty_cache()
model_prefix = (datetime.now()-timedelta(hours=5)).strftime("%d-%m-%Y_%H-%M")
if experiment_name is not None:
experiment_name = model_prefix + "__" + experiment_name
else:
experiment_name = model_prefix
if options is None:
options = {
'use_jaccard': True,
'use_lovasz': True,
'early_stopping': True,
'validation': True,
'model': 'encnet', # model name (default: encnet)
'backbone': 'resnet50', # backbone name (default: resnet50)
'jpu': True, # 'JPU'
'dilated': True, # 'dilation'
'lateral': False, #'employ FPN')
'dataset':'ade20k', # 'dataset name (default: pascal12)')
'workers': 16, # dataloader threads
'base_size': 520, # 'base image size'
'crop_size': 480, # 'crop image size')
'train_split':'train', # 'dataset train split (default: train)'
# training hyper params
'aux': False, # 'Auxilary Loss'e
'aux_weight': 0.2, # 'Auxilary loss weight (default: 0.2)'
'se_loss': False, # 'Semantic Encoding Loss SE-loss'
'se_weight': 0.2, # 'SE-loss weight (default: 0.2)'
'epochs': num_epochs, # 'number of epochs to train (default: auto)'
'start_epoch': 0, # 'start epochs (default:0)'
'batch_size': batch_size, # 'input batch size for training (default: auto)'
'test_batch_size': None, # 'input batch size for testing (default: same as batch size)'
# optimizer params
'optimizer': 'sgd',
'lovasz_hinge': True,
'lr': 0.01, # 'learning rate (default: auto)'
'lr_scheduler': 'poly', # 'learning rate scheduler (default: poly)'
'momentum': 0.9, # 'momentum (default: 0.9)'
'weight_decay': 1e-4, # 'w-decay (default: 1e-4)'
# cuda, seed and logging
'no_cuda': False, # 'disables CUDA training'
'seed': 100, # 'random seed (default: 1)'
# checking point
'resume': None, # 'put the path to resuming file if needed'
'checkname': 'default', # 'set the checkpoint name'
'model-zoo': None, # 'evaluating on model zoo model'
# finetuning pre-trained models
'ft': False, # 'finetuning on a different dataset'
# evaluation option
'split': 'val',
'mode': 'testval',
'ms': False, # 'multi scale & flip'
'no_val': False, # 'skip validation during training'
}
options['cuda'] = torch.cuda.is_available() and not options['no_cuda']
# Convert options dict to attributed object
model_args = ObjectView(options)
train_dataloader = get_dataloader(
in_dir=train_path, load_test=False, batch_size=batch_size, batch_trim=batch_trim, split='train',
tier2=tier2
)
if model_args.validation:
val_dataloader = get_dataloader(
in_dir=train_path, load_test=False, batch_size=16, batch_trim=batch_trim, split='test'
)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Compile modified FastFCN model.
model = Network.get_model(model_args)
model.load_state_dict(torch.load('models/14-03-2020_10-49__unfreezing_layers_gen_chkpt/14-03-2020_10-49__unfreezing_layers_gen_chkpt_m.pt'))
model.to(device)
# Optimizer
params = [p for p in model.parameters() if p.requires_grad]
if model_args.optimizer == 'adam':
# ADAM
optimizer = torch.optim.Adam(params, lr=0.0005, weight_decay=0.0005)
elif model_args.optimizer == 'sgd':
optimizer = torch.optim.SGD(params, lr=model_args.lr,
momentum=model_args.momentum, weight_decay=model_args.weight_decay)
# Learning rate scheduler
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
# optimizer, step_size=2, gamma=0.5
# )
lr_scheduler = FastFCN.encoding.utils.LR_Scheduler(model_args.lr_scheduler, model_args.lr,
model_args.epochs, len(train_dataloader))
if model_args.use_lovasz:
# Loss Function (Lovasz Hinge)
criterion = L.lovasz_hinge
else:
# Loss Function (Segmentation Loss)
criterion = Criterion.SegmentationLosses(
se_loss=model_args.se_loss, aux=model_args.aux, nclass=2,
se_weight=model_args.se_weight, aux_weight=model_args.aux_weight
)
if model_args.early_stopping:
early_stopper = EarlyStopping(patience=10, verbose=True)
bottom_up_layers = layer_gen(model)
best_pred = 0.0
for epoch in range(num_epochs): # loop over the dataset multiple times
if epoch>0:
try:
unfreeze_layer = next(bottom_up_layers)
unfreeze_layer.requires_grad_()
grp = {'params': unfreeze_layer.parameters()}
optimizer.add_param_group(grp)
except:
pass
if model_args.early_stopping:
if early_stopper.early_stop:
break
train_loss = 0.0
model.train()
for i, (images, masks, _) in enumerate(train_dataloader, 0):
# Set learning rate first time
lr_scheduler(optimizer, i, epoch, best_pred)
images = images.to(device)
masks = masks.to(device).squeeze(1).round().long()
# get the inputs; data is a list of [inputs, labels]
masks.requires_grad = False
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(images)
if model_args.use_lovasz:
loss = criterion(outputs[0], masks)
else:
loss = criterion(*outputs, masks)
loss.backward()
optimizer.step()
# print statistics
train_loss += loss.item()
if i % reporting_int == 0: # print every 2000 mini-batches
print('[%d, %5d] loss/batch: %.3f' %
(epoch + 1, i + 1, train_loss / reporting_int))
train_loss = 0.0
#lr_scheduler.step()
# Calculation Validation Loss
# torch.cuda.empty_cache() # Necessary?!?
if model_args.validation:
print('Calculating Validation Loss')
with torch.no_grad():
model.eval()
val_loss = 0
val_len = 0
for i, (images, masks, _) in enumerate(val_dataloader):
if model_args.use_jaccard:
images = images.to(device)
images.requires_grad=False
outputs = model(images)
outputs = (outputs[0]>0).long().data
masks = masks.to(device)
loss = L.iou_binary(outputs, masks)
assert type(loss) == float
val_loss += loss
else:
images = images.to(device)
masks = masks.to(device).squeeze(1).round().long()
# get the inputs; data is a list of [inputs, labels]
images.requires_grad=False
masks.requires_grad=False
outputs = model(images)
loss = criterion(*outputs, masks)
val_loss += loss.item()
val_len = i
# --- end of data iteration -------
print("Mean val loss per batch:", val_loss / val_len)
if best_pred == 0:
best_pred = val_loss
elif val_loss < best_pred:
best_pred = val_loss
if model_args.early_stopping:
# Check for early stopping conditions:
early_stopper(val_loss, model, experiment_name, use_lovasz=model_args.use_lovasz)
# --- Save model if not using early stopping ----
if not model_args.early_stopping:
save_model(model, experiment_name=experiment_name + '_chkpt')
print('Checkpoint saved at epoch,', epoch+1)
print('Epoch,', epoch+1, 'ended.')
# --- end of epoch -------
save_model(model, experiment_name)
return None
if __name__=='__main__':
PARSER = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter
)
SUBPARSERS = PARSER.add_subparsers(dest='command')
TRAIN_PARSER = SUBPARSERS.add_parser('all', help=train_fastfcn_mod.__doc__)
TRAIN_PARSER.add_argument(
'-name', default=None, type=str, required=False,
help='Experiment name.')
TRAIN_PARSER.add_argument(
'-epochs', default=8, type=int, required=False,
help='Number of epochs.')
TRAIN_PARSER.add_argument(
'-report', default=10, type=int, required=False,
help='Number of batches between loss reports (int).')
TRAIN_PARSER.add_argument(
'-batch_size', default=16, type=int, required=False,
help='The filter used to match logs.')
TRAIN_PARSER.add_argument(
'-train_path', default=None, type=str, required=False,
help='Folder containing training images, with images and masks subdirectory.')
TRAIN_PARSER.add_argument(
'-batch_trim', default=None, type=int, required=False,
help='Option to only train for a limit number of batches in each epoch.')
TRAIN_PARSER.add_argument(
'-tier2', default=None, type=bool, required=False,
help='whether or not to train on tier 2 data')
PARSED_ARGS = PARSER.parse_args()
print('Args:\n', PARSED_ARGS)
if PARSED_ARGS.command == 'all':
train_fastfcn_mod(
num_epochs=PARSED_ARGS.epochs, reporting_int=PARSED_ARGS.report,
batch_size=PARSED_ARGS.batch_size, experiment_name=PARSED_ARGS.name,
train_path=PARSED_ARGS.train_path, batch_trim=PARSED_ARGS.batch_trim,
tier2= PARSED_ARGS.tier2
)