-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_tf_trt.py
executable file
·378 lines (317 loc) · 13.5 KB
/
benchmark_tf_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env python3
import platform
PLATFORM = platform.system().lower()
GOOGLE = 'edge_tpu'
INTEL = 'ncs2'
NVIDIA = 'jetson_nano'
PI = 'raspberry_pi'
IS_LINUX = (PLATFORM == 'linux')
if IS_LINUX:
PLATFORM = platform.linux_distribution()[0].lower()
if PLATFORM == 'debian':
try:
with open('/proc/cpuinfo') as f:
for line in f:
line = line.strip()
if line.startswith('Hardware') and ( line.endswith('BCM2708') or line.endswith('BCM2835')):
PLATFORM = PI
print("Running on a Raspberry Pi.")
break
except:
print("Unknown platform based on Debian.")
pass
elif PLATFORM == 'mendel':
PLATFORM = GOOGLE
print("Running on a Coral Dev Board.")
try:
from edgetpu.detection.engine import DetectionEngine
print("DetectionEngine support present.")
except ImportError:
try:
from openvino.inference_engine import IENetwork, IEPlugin
print("OpenVINO present.")
print("Assuming Movidius hardware.")
PLATFORM = INTEL
except ImportError:
try:
import tensorflow as tf
if (tf.test.is_built_with_cuda()):
print("TensorFlow with GPU support present.")
print("Assuming Jetson Nano.")
try:
import tensorflow.contrib.tensorrt as trt
print("TensorRT support present.")
PLATFORM = NVIDIA
from object_detection.protos import pipeline_pb2
from object_detection.protos import image_resizer_pb2
from object_detection import exporter
from google.protobuf import text_format
except:
print("No TensorRT support found.")
print("Unknown TensorFlow platform.")
PLATFORM = 'unknown'
else:
print("No GPU support in TensorFlow.")
except ImportError:
print("No TensorFlow support found.")
LEGAL_PLATFORMS = NVIDIA
assert PLATFORM in LEGAL_PLATFORMS, "Don't understand platform %s." % PLATFORM
INPUT_NAME='image_tensor'
BOXES_NAME='detection_boxes'
CLASSES_NAME='detection_classes'
SCORES_NAME='detection_scores'
MASKS_NAME='detection_masks'
NUM_DETECTIONS_NAME='num_detections'
FROZEN_GRAPH_NAME='frozen_inference_graph.pb'
PIPELINE_CONFIG_NAME='pipeline.config'
CHECKPOINT_PREFIX='model.ckpt'
import sys
import os
import logging as log
import argparse
import subprocess
from timeit import default_timer as timer
import cv2
from PIL import Image
from PIL import ImageFont, ImageDraw
def make_const6(const6_name='const6'):
graph = tf.Graph()
with graph.as_default():
tf_6 = tf.constant(dtype=tf.float32, value=6.0, name=const6_name)
return graph.as_graph_def()
def make_relu6(output_name, input_name, const6_name='const6'):
graph = tf.Graph()
with graph.as_default():
tf_x = tf.placeholder(tf.float32, [10, 10], name=input_name)
tf_6 = tf.constant(dtype=tf.float32, value=6.0, name=const6_name)
with tf.name_scope(output_name):
tf_y1 = tf.nn.relu(tf_x, name='relu1')
tf_y2 = tf.nn.relu(tf.subtract(tf_x, tf_6, name='sub1'), name='relu2')
#tf_y = tf.nn.relu(tf.subtract(tf_6, tf.nn.relu(tf_x, name='relu1'), name='sub'), name='relu2')
#tf_y = tf.subtract(tf_6, tf_y, name=output_name)
tf_y = tf.subtract(tf_y1, tf_y2, name=output_name)
graph_def = graph.as_graph_def()
graph_def.node[-1].name = output_name
# remove unused nodes
for node in graph_def.node:
if node.name == input_name:
graph_def.node.remove(node)
for node in graph_def.node:
if node.name == const6_name:
graph_def.node.remove(node)
for node in graph_def.node:
if node.op == '_Neg':
node.op = 'Neg'
return graph_def
def convert_relu6(graph_def, const6_name='const6'):
# add constant 6
has_const6 = False
for node in graph_def.node:
if node.name == const6_name:
has_const6 = True
if not has_const6:
const6_graph_def = make_const6(const6_name=const6_name)
graph_def.node.extend(const6_graph_def.node)
for node in graph_def.node:
if node.op == 'Relu6':
input_name = node.input[0]
output_name = node.name
relu6_graph_def = make_relu6(output_name, input_name, const6_name=const6_name)
graph_def.node.remove(node)
graph_def.node.extend(relu6_graph_def.node)
return graph_def
def remove_node(graph_def, node):
for n in graph_def.node:
if node.name in n.input:
n.input.remove(node.name)
ctrl_name = '^' + node.name
if ctrl_name in n.input:
n.input.remove(ctrl_name)
graph_def.node.remove(node)
def remove_op(graph_def, op_name):
matches = [node for node in graph_def.node if node.op == op_name]
for match in matches:
remove_node(graph_def, match)
def f_force_nms_cpu(frozen_graph):
for node in frozen_graph.node:
if 'NonMaxSuppression' in node.name:
node.device = '/device:CPU:0'
return frozen_graph
def f_replace_relu6(frozen_graph):
return convert_relu6(frozen_graph)
def f_remove_assert(frozen_graph):
remove_op(frozen_graph, 'Assert')
return frozen_graph
def build_detection_graph(config, checkpoint,
batch_size=1,
score_threshold=None,
force_nms_cpu=True,
replace_relu6=True,
remove_assert=True,
input_shape=None,
output_dir='.generated_model'):
"""Builds a frozen graph for a pre-trained object detection model"""
config_path = config
checkpoint_path = checkpoint
# parse config from file
config = pipeline_pb2.TrainEvalPipelineConfig()
with open(config_path, 'r') as f:
text_format.Merge(f.read(), config, allow_unknown_extension=True)
# override some config parameters
if config.model.HasField('ssd'):
config.model.ssd.feature_extractor.override_base_feature_extractor_hyperparams = True
if score_threshold is not None:
config.model.ssd.post_processing.batch_non_max_suppression.score_threshold = score_threshold
if input_shape is not None:
config.model.ssd.image_resizer.fixed_shape_resizer.height = input_shape[0]
config.model.ssd.image_resizer.fixed_shape_resizer.width = input_shape[1]
elif config.model.HasField('faster_rcnn'):
if score_threshold is not None:
config.model.faster_rcnn.second_stage_post_processing.score_threshold = score_threshold
if input_shape is not None:
config.model.faster_rcnn.image_resizer.fixed_shape_resizer.height = input_shape[0]
config.model.faster_rcnn.image_resizer.fixed_shape_resizer.width = input_shape[1]
if os.path.isdir(output_dir):
subprocess.call(['rm', '-rf', output_dir])
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
# export inference graph to file (initial)
with tf.Session(config=tf_config) as tf_sess:
with tf.Graph().as_default() as tf_graph:
exporter.export_inference_graph(
'image_tensor',
config,
checkpoint_path,
output_dir,
input_shape=[batch_size, None, None, 3]
)
# read frozen graph from file
frozen_graph = tf.GraphDef()
with open(os.path.join(output_dir, FROZEN_GRAPH_NAME), 'rb') as f:
frozen_graph.ParseFromString(f.read())
# apply graph modifications
if force_nms_cpu:
frozen_graph = f_force_nms_cpu(frozen_graph)
if replace_relu6:
frozen_graph = f_replace_relu6(frozen_graph)
if remove_assert:
frozen_graph = f_remove_assert(frozen_graph)
# get input names
# TODO: handle mask_rcnn
input_names = [INPUT_NAME]
output_names = [BOXES_NAME, CLASSES_NAME, SCORES_NAME, NUM_DETECTIONS_NAME]
# remove temporary directory
subprocess.call(['rm', '-rf', output_dir])
return frozen_graph, input_names, output_names
# Function to draw a rectangle with width > 1
def draw_rectangle(draw, coordinates, color, width=1):
for i in range(width):
rect_start = (coordinates[0] - i, coordinates[1] - i)
rect_end = (coordinates[2] + i, coordinates[3] + i)
draw.rectangle((rect_start, rect_end), outline = color, fill = color)
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def inference_tf(runs, image, model, output, label=None):
if label:
labels = ReadLabelFile(label)
else:
labels = None
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
config_path = os.path.join(model, PIPELINE_CONFIG_NAME)
checkpoint_path = os.path.join(model, CHECKPOINT_PREFIX)
frozen_graph, input_names, output_names = build_detection_graph(
config=config_path, checkpoint=checkpoint_path, score_threshold=0.3, batch_size=1)
trt_graph = trt.create_inference_graph(
input_graph_def=frozen_graph, outputs=output_names, max_batch_size=1,
max_workspace_size_bytes=1 << 25, precision_mode='FP16', minimum_segment_size=50 )
with tf.Session(config=tf_config) as sess:
sess.graph.as_default()
tf.import_graph_def(trt_graph, name='')
img = Image.open(image)
draw = ImageDraw.Draw(img, 'RGBA')
helvetica=ImageFont.truetype("./Helvetica.ttf", size=72)
picture = cv2.imread(image)
initial_h, initial_w, channels = picture.shape
frame = cv2.resize(picture, (300, 300))
frame = frame[:, :, [2, 1, 0]] # BGR2RGB
frame = frame.reshape(1, frame.shape[0], frame.shape[1], 3)
# Start synchronous inference and get inference result
# Run inference.
print("Running inferencing for ", runs, " times.")
if runs == 1:
start = timer()
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': frame})
end = timer()
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' )
else:
start = timer()
print('Initial run, discarding.')
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': frame})
end = timer()
print('First run time is ', (end - start)*1000, 'ms')
start = timer()
for i in range(runs):
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': frame})
end = timer()
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' )
# Visualize detected bounding boxes.
num_detections = int(out[0][0])
for i in range(num_detections):
classId = int(out[3][0][i])
score = float(out[1][0][i])
bbox = [float(v) for v in out[2][0][i]]
if score > 0.5:
xmin = bbox[1] * initial_w
ymin = bbox[0] * initial_h
xmax = bbox[3] * initial_w
ymax = bbox[2] * initial_h
if labels:
print(labels[classId], 'score = ', score)
else:
print ('score = ', score)
box = [xmin, ymin, xmax, ymax]
print( 'box = ', box )
draw_rectangle(draw, box, (0,128,128,20), width=5)
if labels:
draw.text((box[0] + 20, box[1] + 20), labels[classId], fill=(255,255,255,20), font=helvetica)
img.save(output)
print ('Saved to ', output)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='Path of the detection model directory.', required=True)
parser.add_argument('--label', help='Path of the labels file.')
parser.add_argument('--input', help='File path of the input image.', required=True)
parser.add_argument('--output', help='File path of the output image.')
parser.add_argument('--runs', help='Number of times to run the inference', type=int, default=1)
args = parser.parse_args()
if ( args.output):
output_file = args.output
else:
output_file = 'out.jpg'
if ( args.label ):
label_file = args.label
else:
label_file = None
result = inference_tf( args.runs, args.input, args.model, output_file, label_file)
if __name__ == '__main__':
main()