forked from petersaj/AP_histology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AP_process_histology.m
418 lines (319 loc) · 14 KB
/
AP_process_histology.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
function AP_process_histology(im_path,resize_factor,slice_images,save_dir)
% AP_process_histology(im_path,resize_factor,slice_images,save_dir)
%
% im_path - path with images of slides (tif/tiff/ome.tiff)
% resize_factor (if not ome.tiff) - resizing factor for saving images (e.g.
% 1/10 scales slides to 1/10 size). Note: if ome.tiff, microns per pixel is
% grabbed from image headers and the images are resized to match the CCF
% scaling (which is 10 microns per pixel)
% slice_images - true/false: images are individual slices, skip slice
% choosing step (false by default)
% save_dir - path to save output images (subfolder in im_path by default)
%
% Resize and white balance histology images and extract images of each slice
% Andy Peters (peters.andrew.j@gmail.com)
% Get and sort image files
im_path_dir = dir([im_path filesep '*.tif*']);
im_fn = natsortfiles(cellfun(@(path,fn) [path filesep fn], ...
{im_path_dir.folder},{im_path_dir.name},'uni',false));
% Check image metadata for pixel size (if ome.tiff)
im_info = imfinfo(im_fn{1});
if isfield(im_info,'ImageDescription')
im_description = im_info(1).ImageDescription;
im_um = regexp(im_description,'PhysicalSizeX="(\S*)".*PhysicalSizeY="(\S*)"','tokens');
else
im_um = [];
end
% If image is RGB, set flag
im_is_rgb = strcmp(im_info(1).PhotometricInterpretation,'RGB');
% Set resize factor from user (if provided), or if no resize factor
% provided and pixel size is available, resize to match CCF
if exist('resize_factor','var') && ~isempty(resize_factor)
% (resize_factor already set by user)
elseif (~exist('resize_factor','var') || isempty(resize_factor)) && ~isempty(im_um)
im_um_x = str2num(im_um{1}{1});
im_um_y = str2num(im_um{1}{2});
if im_um_x ~= im_um_y
error('Pixel X/Y values different (not accounted for yet)')
end
% Set resize factor to match to Allen CCF
allen_um2px = 10; % Allen CCF: 10 um/voxel
resize_factor = im_um_x/allen_um2px;
else
error('No resize factor provided and pixel size not in metadata');
end
% Load and resize images
n_im = length(im_fn);
h = waitbar(0,'Loading and resizing images...');
if ~im_is_rgb
% If channels separated as b/w, load in separately and white balance
n_channels = sum(any([im_info.Height;im_info.Width],1));
im_resized = cell(n_im,n_channels);
for curr_im = 1:n_im
for curr_channel = 1:n_channels
im_resized{curr_im,curr_channel} = imresize(imread(im_fn{curr_im},curr_channel),resize_factor);
end
waitbar(curr_im/n_im,h,['Loading and resizing images (' num2str(curr_im) '/' num2str(n_im) ')...']);
end
close(h);
% Estimate white balance within each channel
% (dirty: assume one peak for background, one for signal)
h = figure;
im_montage = cell(n_channels,1);
channel_caxis = nan(n_channels,2);
channel_color = cell(n_channels,1);
for curr_channel = 1:n_channels
curr_montage = montage(im_resized(:,curr_channel));
im_montage{curr_channel} = curr_montage.CData;
im_hist = histcounts(im_montage{curr_channel}(im_montage{curr_channel} > 0),0:max(im_montage{curr_channel}(:)));
im_hist_smoothed = smooth(im_hist,50,'loess');
im_hist_deriv = [0;diff(im_hist_smoothed)];
% The signal minimum is the valley between background and signal
[~,bg_down] = min(im_hist_deriv);
bg_signal_min = find(im_hist_deriv(bg_down:end) > 0,1) + bg_down;
% The signal maximum is < 1% median value
[~,bg_median_rel] = max(im_hist_smoothed(bg_signal_min:end));
signal_median = bg_median_rel + bg_signal_min - 1;
signal_high_cutoff = im_hist_smoothed(signal_median)*0.01;
signal_high_rel = find(im_hist_smoothed(signal_median:end) < signal_high_cutoff,1);
signal_high = signal_high_rel + signal_median;
% (if no < 1%, just take max)
if(isempty(signal_high))
signal_high = length(im_hist_smoothed);
end
cmin = bg_signal_min;
cmax = signal_high;
caxis([cmin,cmax]);
check_contrast = questdlg('Contrast ok?','Set contrast','Yes','Manual','Yes');
if strcmp(check_contrast,'Manual')
waitfor(imcontrast(gcf));
[cmin,cmax] = caxis;
end
channel_caxis(curr_channel,:) = [cmin,cmax];
channel_color{curr_channel} = questdlg('What color should this be?', ...
'Set color','red','green','blue','red');
end
close(h)
% Get order of colors
color_order_gun = {'red';'green';'blue'};
[~,color_order_slide] = ismember(channel_color,color_order_gun);
% % Display montage of final balanced image, sort color channels by RGB
% im_montage_rgb = zeros(size(im_montage{1},1),size(im_montage{1},2),3);
% im_montage_rgb(:,:,color_order_slide) = ...
% cell2mat(arrayfun(@(ch) rescale(im_montage{ch}, ...
% 'InputMin',channel_caxis(ch,1),'InputMax',channel_caxis(ch,2)), ...
% permute(1:n_channels,[1,3,2]),'uni',false));
% figure;imshow(im_montage_rgb);
% title('Overview of all images');
% Store RGB for each slide
im_rgb = cellfun(@(x) zeros(size(x,1),size(x,2),3),im_resized(:,1),'uni',false);
for curr_im = 1:n_im
im_rgb{curr_im}(:,:,color_order_slide) = ...
cell2mat(arrayfun(@(ch) rescale(im_resized{curr_im,ch}, ...
'InputMin',channel_caxis(ch,1),'InputMax',channel_caxis(ch,2)), ...
permute(1:n_channels,[1,3,2]),'uni',false));
end
elseif im_is_rgb
% If images are already RGB, just load in and resize
im_rgb = cell(n_im,1);
for curr_im = 1:n_im
im_rgb{curr_im} = imresize(imread(im_fn{curr_im}),resize_factor);
waitbar(curr_im/n_im,h,['Loading and resizing images (' num2str(curr_im) '/' num2str(n_im) ')...']);
end
close(h)
end
% Set slice_images false by default
if ~exist('slice_images','var') || isempty(slice_images)
slice_images = false;
end
if ~slice_images
% If slide images, set up GUI to pick slices on slide to extract
slice_fig = figure('KeyPressFcn',@slice_keypress);
% Initialize data
slice_data = struct;
slice_data.im_path = im_path;
slice_data.im_fn = im_fn;
slice_data.im_rescale_factor = resize_factor;
slice_data.im_rgb = im_rgb;
slice_data.curr_slide = 0;
slice_data.slice_mask = cell(0,0);
slice_data.slice_rgb = cell(0,0);
% Update gui data
guidata(slice_fig, slice_data);
% Update slide
update_slide(slice_fig);
elseif slice_images
% If slice images, save all images as-is
% Set save directory as subdirectory within original
if ~exist('save_dir','var') || isempty(save_dir)
save_dir = [im_path filesep 'slices'];
end
if ~exist(save_dir,'dir')
mkdir(save_dir)
end
% Write all slice images to separate files
disp('Saving slice images...');
for curr_im = 1:length(im_rgb)
curr_fn = [save_dir filesep num2str(curr_im) '.tif'];
imwrite(im_rgb{curr_im},curr_fn,'tif');
end
disp('Done.');
end
end
function slice_click(slice_fig,eventdata)
% On slice click, mark to extract
slice_data = guidata(slice_fig);
if eventdata.Button == 1
selected_slice_bw = bwselect(slice_data.mask,eventdata.IntersectionPoint(1),eventdata.IntersectionPoint(2));
% If the selected slice is already part of a user mask, delete that ROI
if size(slice_data.user_masks,3) > 0
clicked_mask = false(size(slice_data.mask));
clicked_mask(round(eventdata.IntersectionPoint(2)),round(eventdata.IntersectionPoint(1))) = true;
overlap_roi = any(clicked_mask(:) & reshape(slice_data.user_masks,[],size(slice_data.user_masks,3)),1);
if any(overlap_roi)
% Clear overlapping mask
slice_data.user_masks(:,:,overlap_roi) = [];
% Delete and clear bounding box
delete(slice_data.user_rectangles(overlap_roi));
slice_data.user_rectangles(overlap_roi) = [];
% Update gui data
guidata(slice_fig, slice_data);
return
end
end
% If left button pressed, create new slice ROI
roi_num = size(slice_data.user_masks,3) + 1;
% Make new mask with object
slice_data.user_masks(:,:,roi_num) = selected_slice_bw;
% Draw bounding box around object
box_x = find(any(slice_data.user_masks(:,:,roi_num),1),1);
box_y = find(any(slice_data.user_masks(:,:,roi_num),2),1);
box_w = find(any(slice_data.user_masks(:,:,roi_num),1),1,'last') - box_x;
box_h = find(any(slice_data.user_masks(:,:,roi_num),2),1,'last') - box_y;
slice_data.user_rectangles(roi_num) = ...
rectangle('Position',[box_x,box_y,box_w,box_h],'EdgeColor','w');
elseif eventdata.Button == 3
% If right button pressed, manually draw rectangle ROI
roi_num = size(slice_data.user_masks,3) + 1;
% Draw ROI
manual_roi = imrect;
% Make new mask with object
slice_data.user_masks(:,:,roi_num) = manual_roi.createMask;
% Draw bounding box
slice_data.user_rectangles(roi_num) = ...
rectangle('Position',manual_roi.getPosition,'EdgeColor','w');
% Delete the ROI
manual_roi.delete;
end
% Update gui data
guidata(slice_fig, slice_data);
end
function slice_keypress(slice_fig,eventdata)
% Move to next slide with spacebar
if strcmp(eventdata.Key,'space')
update_slide(slice_fig)
end
end
function update_slide(slice_fig)
% Find slices on slide by over-threshold objects of a large enough size
slice_data = guidata(slice_fig);
% Pull the images from selected slices (not during initialization)
if slice_data.curr_slide > 0
extract_slice_rgb(slice_fig);
slice_data = guidata(slice_fig);
end
% After the last slice, save the images and close out
if slice_data.curr_slide == length(slice_data.im_rgb)
save_slice_rgb(slice_fig);
close(slice_fig);
return
end
slice_data.curr_slide = slice_data.curr_slide + 1;
% Minimum slice size
min_slice = 1000; %(1000/10)^2; % (um/10(CCF units))^2
% Estimate slice white threshold
curr_im_bw = nanmean(slice_data.im_rgb{slice_data.curr_slide},3);
[im_hist,im_hist_edges] = histcounts(curr_im_bw, ...
linspace(min(curr_im_bw(:)),max(curr_im_bw(:)),100));
im_hist_deriv = [0;diff(smooth(im_hist,3))];
[~,bg_down] = min(im_hist_deriv);
bg_signal_min = find(im_hist_deriv(bg_down:end) > 0,1) + bg_down;
slice_threshold = im_hist_edges(bg_signal_min)*0.5; % err on the smaller side
slice_mask = imfill(bwareaopen(mean( ...
slice_data.im_rgb{slice_data.curr_slide},3) > slice_threshold,min_slice),'holes');
slice_conncomp = bwconncomp(slice_mask);
im_handle = imshow(slice_data.im_rgb{slice_data.curr_slide});
set(im_handle,'ButtonDownFcn',@slice_click);
title('Finding slice boundaries...');
drawnow;
slice_boundaries = bwboundaries(slice_mask);
slice_lines = gobjects(length(slice_boundaries),1);
for curr_slice = 1:length(slice_boundaries)
slice_lines(curr_slice) = line(slice_boundaries{curr_slice}(:,2), ...
slice_boundaries{curr_slice}(:,1),'color','w','linewidth',2,'LineSmoothing','on','linestyle','--');
end
title('Click to save/remove (left = auto, right = manual), spacebar to finish slide');
slice_data.im_h = im_handle;
slice_data.mask = slice_mask;
slice_data.lines = slice_lines;
slice_data.user_masks = zeros(size(slice_mask,1),size(slice_mask,2),0,'logical');
slice_data.user_rectangles = gobjects(0);
% Update gui data
guidata(slice_fig, slice_data);
end
function extract_slice_rgb(slice_fig)
% When changing slide, extract the selected slice images
slice_data = guidata(slice_fig);
n_slices = size(slice_data.user_masks,3);
curr_slice_mask = cell(n_slices,1);
curr_slice_rgb = cell(n_slices,1);
for curr_slice = 1:n_slices
% Pull a rectangular area, exclude spaces (e.g. between torn piece)
dilate_size = 30;
curr_mask = imdilate(logical(any(slice_data.user_masks(:,:,curr_slice),2).* ...
any(slice_data.user_masks(:,:,curr_slice),1)),ones(dilate_size));
curr_rgb = reshape(slice_data.im_rgb{slice_data.curr_slide}( ...
repmat(curr_mask,1,3)),sum(any(curr_mask,2)),sum(any(curr_mask,1)),3);
curr_slice_mask{curr_slice} = curr_mask;
curr_slice_rgb{curr_slice} = curr_rgb;
end
% Store the image and mask for each slice
slice_data.slice_mask{slice_data.curr_slide} = curr_slice_mask;
slice_data.slice_rgb{slice_data.curr_slide} = curr_slice_rgb;
% Update gui data
guidata(slice_fig, slice_data);
end
function save_slice_rgb(slice_fig)
% After the last slide, save the slice images
slice_data = guidata(slice_fig);
% Set save directory as subdirectory within original
save_dir = [slice_data.im_path filesep 'slices'];
if ~exist(save_dir,'dir')
mkdir(save_dir)
end
% Concatenate all slice images
slice_rgb_cat = vertcat(slice_data.slice_rgb{:});
% Write all slice images to separate files
for curr_im = 1:length(slice_rgb_cat)
curr_fn = [save_dir filesep num2str(curr_im) '.tif'];
imwrite(slice_rgb_cat{curr_im},curr_fn,'tif');
end
% Get rows and columns for each slice corresponding to full size image
slice_slide_locations = cell(size(slice_data.slice_mask));
for curr_slide = 1:length(slice_data.slice_mask)
for curr_slice = 1:length(slice_data.slice_mask{curr_slide})
curr_mask = slice_data.slice_mask{curr_slide}{curr_slice};
mask_x = find(interp1(1:size(curr_mask,2),+any(curr_mask,1), ...
linspace(1,size(curr_mask,2), ...
round(size(curr_mask,2)/slice_data.im_rescale_factor)),'nearest'));
mask_y = find(interp1(1:size(curr_mask,1),+any(curr_mask,2), ...
linspace(1,size(curr_mask,1), ...
round(size(curr_mask,1)/slice_data.im_rescale_factor)),'nearest'));
slice_slide_locations{curr_slide}{curr_slice} = ...
{mask_y,mask_x};
end
end
slice_slide_locations_fn = [save_dir filesep 'slice_slide_locations.mat'];
save(slice_slide_locations_fn,'slice_slide_locations');
disp(['Slices saved in ' save_dir]);
end