-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
123 lines (108 loc) · 4.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import cvxpy as cp
def periodic_measurement_times(T,period):
return list( range(0,T+1, period) )
def L2_trajectory(x_list, u_list, w_list, Q, R):
assert len(w_list)==len(u_list)==len(x_list)-1
energy_xu=0
energy_w=0
for t in range(len(w_list)):
energy_xu += x_list[t].T @ Q @ x_list[t] + u_list[t].T @ R @ u_list[t]
energy_w += w_list[t].T @ w_list[t]
if energy_w != 0.0:
return np.sqrt(energy_xu/energy_w)
else:
return 0.0
def causal_factorization(low_btri, rank_eps):
# low_btri is a block lower triangular matrix, e.g., with (T+1) blocks of the same size (nu,ny)
n_rows = low_btri.shape[0]
E = np.array([]).reshape((0,low_btri.shape[1]))
D = np.array([]).reshape((0,0)) # trick
rank_counter = 0
rank_low_btri = np.linalg.matrix_rank(low_btri, tol=rank_eps)
added_rows = rank_low_btri*[None]
for row in range(n_rows):
submat_new = low_btri[0:row+1, :] # rows up to row (note: last step row = (T+1)*nu)
rank_new = np.linalg.matrix_rank(submat_new, tol=rank_eps)
if rank_new == rank_counter + 1:
added_rows[rank_counter] = row
rank_counter += 1
# add vector to E matrix
E = np.vstack([E, submat_new[row:row+1, :]])
# modify D matrix
unit = np.zeros([1, rank_counter])
unit[0, -1] = 1. # add a 1 at the last column of unit
D = np.hstack([D, np.zeros([row, 1])]) # D is (row, rank_counter)
D = np.vstack([D, unit]) # D is (row+1, rank_counter)
assert E.shape == (rank_counter, low_btri.shape[1])
assert D.shape == (row+1, rank_counter)
elif rank_new == rank_counter:
# solve linear system
c = np.linalg.lstsq( E.T , low_btri[row, :], rcond=None)[0]
c = c.reshape(([1, rank_counter]))
D = np.vstack([D, c])
assert E.shape == (rank_counter, low_btri.shape[1])
assert D.shape == (row+1, rank_counter)
else:
raise Exception('Rank increased more than 1.')
assert E.shape == (rank_counter, low_btri.shape[1])
assert D.shape == (low_btri.shape[0], rank_counter)
assert rank_counter == rank_low_btri
assert len(added_rows) == rank_low_btri
return D,E
def approximate_causal_factorization(X, tol, useRowNorm=False):
if useRowNorm:
return approximate_causal_factorization_row_norm(X, tol)
else:
return approximate_causal_factorization_2_norm(X, tol)
def approximate_causal_factorization_2_norm(X, tol):
# return D and E s.t. ||X-DE||_2 <= tol where || Z ||_2 is the spectral norm of the matrix Z.
(n_rows,n_cols) = np.shape(X)
D = np.zeros((0,0))
E = np.zeros((0,n_cols))
r = 0 # band of the factorization
encoded_rows = []
for l in range(n_rows):
# compute the error
if r==0:
err = np.linalg.norm( X[0:l+1,:] ,2)
d = np.zeros((1,r))
else:
d = cp.Variable((1,r))
objective = cp.Minimize( cp.norm( X[0:l+1,:] - cp.vstack([D, d])@E , 2) )
problem = cp.Problem(objective,[])
err = problem.solve(solver=cp.MOSEK,
mosek_params = {'MSK_DPAR_INTPNT_CO_TOL_DFEAS': 1e-11,
},
verbose=False)
if problem.status != cp.OPTIMAL:
raise Exception("Solver did not converge!")
d = d.value
if err <= tol:
D = np.vstack([D, d])
else:
E = np.vstack([E, X[l,:]])
D = np.block( [[D, np.zeros((l,1))],
[np.zeros((1,r)), np.array([[1]])]])
r = r+1
encoded_rows.append(l)
assert np.linalg.norm( X-D@E , 2) <= tol
return D,E,encoded_rows
def approximate_causal_factorization_row_norm(X, tol):
# return D and E s.t. ||X-DE||_{r,2} <= tol, where || Z ||_{r,2} := max_l || Z[l,:] ||_2, i.e., it is the max of the 2-norm of each row
tol2 = tol**2
(n_rows,n_cols) = np.shape(X)
D = np.zeros((0,0))
E = np.zeros((0,n_cols))
r = 0 # band of the factorization
for l in range(n_rows):
d,err2,_,_ = np.linalg.lstsq(E.T, (X[l,:]).T , rcond=None) # err2 is a (1,) vector that contains the squared norm of the residual
if err2[0] <= tol2:
D = np.vstack([D, d])
else:
E = np.vstack([E, X[l,:]])
D = np.block( [[D, np.zeros((l,1))],
[np.zeros((1,r)), np.array([[1]])]])
r = r+1
assert np.max(np.linalg.norm( X-D@E , axis=1 )) <= tol
return D,E