forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
executable file
·113 lines (108 loc) · 4.21 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--load_dir",
type=str,
default="",
help="Specify the path to load trained models.")
parser.add_argument(
"--load_pretraining_params",
type=str,
default="",
help="Specify the path to load pretrained model parameters, NOT including moment and learning_rate"
)
parser.add_argument(
"--batch_size",
type=int,
default=128,
help="The sequence number of a mini-batch data. (default: %(default)d)")
parser.add_argument(
"--embed_size",
type=int,
default=512,
help="The dimension of embedding table. (default: %(default)d)")
parser.add_argument(
"--hidden_size",
type=int,
default=4096,
help="The size of rnn hidden unit. (default: %(default)d)")
parser.add_argument(
"--num_layers",
type=int,
default=2,
help="The size of rnn layers. (default: %(default)d)")
parser.add_argument(
"--num_steps",
type=int,
default=20,
help="The size of sequence len. (default: %(default)d)")
parser.add_argument(
"--all_train_tokens",
type=int,
default=35479,
help="The size of all training tokens")
parser.add_argument(
"--data_path", type=str, help="all the data for train,valid,test")
parser.add_argument("--vocab_path", type=str, help="vocab file path")
parser.add_argument(
'--use_gpu', type=bool, default=False, help='whether using gpu')
parser.add_argument('--enable_ce', action='store_true')
parser.add_argument('--test_nccl', action='store_true')
parser.add_argument('--optim', default='adagrad', help='optimizer type')
parser.add_argument('--sample_softmax', action='store_true')
parser.add_argument(
"--learning_rate",
type=float,
default=0.2,
help="Learning rate used to train the model. (default: %(default)f)")
parser.add_argument(
"--log_interval",
type=int,
default=100,
help="log the train loss every n batches."
"(default: %(default)d)")
parser.add_argument(
"--save_interval",
type=int,
default=10000,
help="log the train loss every n batches."
"(default: %(default)d)")
parser.add_argument(
"--dev_interval",
type=int,
default=10000,
help="cal dev loss every n batches."
"(default: %(default)d)")
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--max_grad_norm', type=float, default=10.0)
parser.add_argument('--proj_clip', type=float, default=3.0)
parser.add_argument('--cell_clip', type=float, default=3.0)
parser.add_argument('--max_epoch', type=float, default=10)
parser.add_argument('--local', type=bool, default=False)
parser.add_argument('--shuffle', type=bool, default=False)
parser.add_argument('--use_custom_samples', type=bool, default=False)
parser.add_argument('--para_save_dir', type=str, default='checkpoints')
parser.add_argument('--train_path', type=str, default='')
parser.add_argument('--test_path', type=str, default='')
parser.add_argument('--update_method', type=str, default='nccl2')
parser.add_argument('--random_seed', type=int, default=0)
parser.add_argument('--n_negative_samples_batch', type=int, default=8000)
args = parser.parse_args()
return args