forked from docker/genai-stack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bot.py
202 lines (174 loc) · 6.18 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import logging
import streamlit as st
from streamlit.logger import get_logger
from langchain.callbacks.base import BaseCallbackHandler
from langchain_community.graphs import Neo4jGraph
from dotenv import load_dotenv
from utils import (
create_vector_index,
)
from chains import (
load_embedding_model,
load_llm,
configure_llm_only_chain,
configure_qa_rag_chain,
generate_ticket,
)
import asyncio
# Load environment variables from .env file
load_dotenv(".env")
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Retrieve environment variables
url = os.getenv("NEO4J_URI")
username = os.getenv("NEO4J_USERNAME")
password = os.getenv("NEO4J_PASSWORD")
ollama_base_url = os.getenv("OLLAMA_BASE_URL")
embedding_model_name = os.getenv("EMBEDDING_MODEL")
llm_name = os.getenv("LLM")
# Remapping for Langchain Neo4j integration
os.environ["NEO4J_URL"] = url
# Initialize Neo4j graph
try:
neo4j_graph = Neo4jGraph(
url=url, username=username, password=password, refresh_schema=False
)
create_vector_index(neo4j_graph)
except Exception as e:
logger.error(f"Error initializing Neo4j graph: {e}")
st.error("Error initializing Neo4j graph")
raise
# Load embedding model
embeddings, dimension = load_embedding_model(
embedding_model_name, config={"ollama_base_url": ollama_base_url}, logger=logger
)
# Load LLM
llm = load_llm(llm_name, logger=logger, config={"ollama_base_url": ollama_base_url})
# Configure LLM chains
llm_chain = configure_llm_only_chain(llm)
rag_chain = configure_qa_rag_chain(
llm, embeddings, embeddings_store_url=url, username=username, password=password
)
class StreamHandler(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to Streamlit container."""
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
# Streamlit UI
styl = f"""
<style>
/* not great support for :has yet (hello FireFox), but using it for now */
.element-container:has([aria-label="Select RAG mode"]) {{
position: fixed;
bottom: 33px;
background: white;
z-index: 101;
}}
.stChatFloatingInputContainer {{
bottom: 20px;
}}
/* Generate ticket text area */
textarea[aria-label="Description"] {{
height: 200px;
}}
.element-container:has([aria-label="What coding issue can I help you resolve today?"]) {{
bottom: 45px;
}}
</style>
"""
st.markdown(styl, unsafe_allow_html=True)
def chat_input():
"""Handle user input and generate LLM response."""
user_input = st.chat_input("What coding issue can I help you resolve today?")
if user_input:
with st.chat_message("user"):
st.write(user_input)
with st.chat_message("assistant"):
st.caption(f"RAG: {name}")
stream_handler = StreamHandler(st.empty())
try:
result = asyncio.run(output_function(
{"question": user_input, "chat_history": []}, callbacks=[stream_handler]
))["answer"]
output = result
st.session_state[f"user_input"].append(user_input)
st.session_state[f"generated"].append(output)
st.session_state[f"rag_mode"].append(name)
except Exception as e:
logger.error(f"Error processing user input: {e}")
st.error("Error processing user input")
def display_chat():
"""Display chat history."""
# Session state
if "generated" not in st.session_state:
st.session_state[f"generated"] = []
if "user_input" not in st.session_state:
st.session_state[f"user_input"] = []
if "rag_mode" not in st.session_state:
st.session_state[f"rag_mode"] = []
if st.session_state[f"generated"]:
size = len(st.session_state[f"generated"])
# Display only the last three exchanges
for i in range(max(size - 3, 0), size):
with st.chat_message("user"):
st.write(st.session_state[f"user_input"][i])
with st.chat_message("assistant"):
st.caption(f"RAG: {st.session_state[f'rag_mode'][i]}")
st.write(st.session_state[f"generated"][i])
with st.expander("Not finding what you're looking for?"):
st.write(
"Automatically generate a draft for an internal ticket to our support team."
)
st.button(
"Generate ticket",
type="primary",
key="show_ticket",
on_click=open_sidebar,
)
with st.container():
st.write(" ")
def mode_select() -> str:
"""Select RAG mode."""
options = ["Disabled", "Enabled"]
return st.radio("Select RAG mode", options, horizontal=True)
name = mode_select()
if name == "LLM only" or name == "Disabled":
output_function = llm_chain
elif name == "Vector + Graph" or name == "Enabled":
output_function = rag_chain
def open_sidebar():
"""Open sidebar for ticket generation."""
st.session_state.open_sidebar = True
def close_sidebar():
"""Close sidebar for ticket generation."""
st.session_state.open_sidebar = False
if not "open_sidebar" in st.session_state:
st.session_state.open_sidebar = False
if st.session_state.open_sidebar:
try:
new_title, new_question = generate_ticket(
neo4j_graph=neo4j_graph,
llm_chain=llm_chain,
input_question=st.session_state[f"user_input"][-1],
)
with st.sidebar:
st.title("Ticket draft")
st.write("Auto generated draft ticket")
st.text_input("Title", new_title)
st.text_area("Description", new_question)
st.button(
"Submit to support team",
type="primary",
key="submit_ticket",
on_click=close_sidebar,
)
except Exception as e:
logger.error(f"Error generating ticket: {e}")
st.error("Error generating ticket")
display_chat()
chat_input()