-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecbole_run.py
292 lines (240 loc) · 9.81 KB
/
recbole_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Recbole utilities adapted from recbole.quick_start to this project
# @Time : 2024/06/02
# @Author : Javier Wang Zhou
import argparse
import importlib
import pathlib
import json
import sys
from recbole.quick_start import run_recboles
from recbole.utils.utils import get_model
from logging import getLogger
from torch import load, cuda, device
from recbole.config import Config
from recbole.data import (
create_dataset,
data_preparation,
)
from recbole.data.transform import construct_transform
from recbole.utils import (
init_logger,
get_model,
get_trainer,
init_seed,
set_color,
get_flops,
)
# use CPU if CUDA unavailable
load_device = device("cpu") if not cuda.is_available() else None
def parse_model(model):
try:
model_class = get_model(model)
except ValueError as v:
# Import from current directory
if importlib.util.find_spec(model):
module = importlib.import_module(model)
model_class = getattr(module, model)
if not model_class:
raise v
return model_class
def load_data_and_model(load_model, preload_dataset=None, update_config=None, use_training=False, verbose=False):
r"""Load filtered dataset, split dataloaders and saved model.
Args:
load_model (dict | str): Preloaded checkpoint or path to saved model.
preload_dataset (Dataset): Preloaded dataset.
update_config (dict): Config entries to update.
use_training (bool): Whether to use training set or full dataset.
verbose (bool): Whether to log data preparation.
Returns:
tuple:
- config (Config): An instance object of Config, which record parameter information in :attr:`model_file`.
- model (AbstractRecommender): The model load from :attr:`model_file`.
- dataset (Dataset): The filtered dataset.
- train_data (AbstractDataLoader): The dataloader for training.
- valid_data (AbstractDataLoader): The dataloader for validation.
- test_data (AbstractDataLoader): The dataloader for testing.
"""
sys.path.insert(1, str(pathlib.Path(__file__).parent.resolve()))
checkpoint = load_model
if isinstance(load_model, str):
checkpoint = load(load_model, map_location=load_device)
config: Config = checkpoint["config"]
if update_config:
for key, value in update_config.items():
config[key] = value
config.compatibility_settings()
if config['data_path']:
config['data_path'] = config['data_path'].replace('\\', '/')
if not cuda.is_available():
config['device'] = 'cpu'
init_seed(config["seed"], config["reproducibility"])
init_logger(config)
if verbose:
logger = getLogger()
logger.info(config)
config_seed = config['seed']
config['seed'] = 2020
dataset = preload_dataset or create_dataset(config)
config['seed'] = config_seed
if verbose:
logger.info(dataset)
init_seed(config["seed"], config["reproducibility"])
model = parse_model(config["model"])
train_data = valid_data = test_data = None
if use_training:
train_data, valid_data, test_data = data_preparation(config, dataset)
model = model(config, train_data._dataset).to(config["device"])
else:
model = model(config, dataset).to(config["device"])
model.load_state_dict(checkpoint["state_dict"])
model.load_other_parameter(checkpoint.get("other_parameter"))
return config, model, dataset, train_data, valid_data, test_data
def evaluate_saved_model(saved_model, update_config=None, evaluation_mode='uni100'):
load_model = load(saved_model, map_location=load_device)
eval_args = load_model["config"]["eval_args"]
eval_mode_dict = {'valid': evaluation_mode, 'test': evaluation_mode}
if eval_args:
eval_args["mode"] = eval_mode_dict
else:
config["eval_args"] = {"mode": eval_mode_dict}
config, model, _, _, _, test_data = load_data_and_model(load_model,
update_config=update_config,
use_training=True,
verbose=True)
# trainer loading and initialization
trainer = get_trainer(config["MODEL_TYPE"], config["model"])(config, model)
# model evaluation
test_result = trainer.evaluate(test_data,
load_best_model=False,
show_progress=config["show_progress"],
model_file=saved_model)
getLogger().info(set_color("test result", "yellow") + f": {test_result}")
def run_recbole(
model=None, dataset=None, config_file_list=None, config_dict=None, saved=True
):
r"""A fast running api, which includes the complete process of
training and testing a model on a specified dataset
Args:
model (str | AbstractRecommender, optional): Model name or class. Defaults to ``None``.
dataset (str, optional): Dataset name. Defaults to ``None``.
config_file_list (list, optional): Config files used to modify experiment parameters. Defaults to ``None``.
config_dict (dict, optional): Parameters dictionary used to modify experiment parameters. Defaults to ``None``.
saved (bool, optional): Whether to save the model. Defaults to ``True``.
"""
# configurations initialization
config = Config(
model=model,
dataset=dataset,
config_file_list=config_file_list,
config_dict=config_dict,
)
init_seed(config["seed"], config["reproducibility"])
# logger initialization
init_logger(config)
logger = getLogger()
logger.info(sys.argv)
logger.info(config)
# dataset filtering
dataset = create_dataset(config)
logger.info(dataset)
# dataset splitting
train_data, valid_data, test_data = data_preparation(config, dataset)
# model loading and initialization (modified to accept custom models)
init_seed(config["seed"] + config["local_rank"], config["reproducibility"])
model = (get_model(config["model"]) if isinstance(model, str) else model)(
config, train_data._dataset).to(config["device"])
logger.info(model)
transform = construct_transform(config)
flops = get_flops(model, dataset, config["device"], logger, transform)
logger.info(set_color("FLOPs", "blue") + f": {flops}")
# trainer loading and initialization
trainer = get_trainer(config["MODEL_TYPE"], config["model"])(config, model)
# model training
best_valid_score, best_valid_result = trainer.fit(
train_data, valid_data, saved=saved, show_progress=config["show_progress"]
)
# model evaluation
test_result = trainer.evaluate(
test_data, load_best_model=saved, show_progress=config["show_progress"]
)
logger.info(set_color("best valid ", "yellow") + f": {best_valid_result}")
logger.info(set_color("test result", "yellow") + f": {test_result}")
return {
"best_valid_score": best_valid_score,
"valid_score_bigger": config["valid_metric_bigger"],
"best_valid_result": best_valid_result,
"test_result": test_result,
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", "-m", type=str,
default="BPR", help="name of models")
parser.add_argument(
"--evaluate_model", "-e", type=str, default=None, help="path to saved model to evaluate"
)
parser.add_argument(
"--evaluation_mode", "-em", type=str, default='uni100', help="evaluation mode (e.g: full, uni100, pop100)"
)
parser.add_argument(
"--config_dict", "-c", type=str, default=None, help="JSON dict to update config"
)
parser.add_argument(
"--dataset", "-d", type=str, default="ml-100k", help="name of datasets"
)
parser.add_argument(
"--save", "-s", action='store_true', default=False, help="save the trained model"
)
parser.add_argument("--config_files", type=str,
default=None, help="config files")
parser.add_argument(
"--nproc", type=int, default=1, help="the number of process in this group"
)
parser.add_argument(
"--ip", type=str, default="localhost", help="the ip of master node"
)
parser.add_argument(
"--port", type=str, default="5678", help="the port of master node"
)
parser.add_argument(
"--world_size", type=int, default=-1, help="total number of jobs"
)
parser.add_argument(
"--group_offset",
type=int,
default=0,
help="the global rank offset of this group",
)
args, _ = parser.parse_known_args()
model = parse_model(args.model)
config_file_list = (
args.config_files.strip().split(" ") if args.config_files else None
)
if args.config_dict:
args.config_dict = json.loads(args.config_dict)
if args.nproc == 1 and args.world_size <= 0:
if args.evaluate_model:
evaluate_saved_model(
args.evaluate_model, update_config=args.config_dict, evaluation_mode=args.evaluation_mode)
else:
run_recbole(
model=model, dataset=args.dataset, config_file_list=config_file_list, saved=args.save, config_dict=args.config_dict
)
else:
if args.world_size == -1:
args.world_size = args.nproc
import torch.multiprocessing as mp
# does not work with custom models
mp.spawn(
run_recboles,
args=(
args.model,
args.dataset,
config_file_list,
args.ip,
args.port,
args.world_size,
args.nproc,
args.group_offset,
),
nprocs=args.nproc,
)