forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrpc_image_client.py
432 lines (377 loc) · 15.9 KB
/
grpc_image_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#!/usr/bin/env python
# Copyright 2020-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import numpy as np
from PIL import Image
import os
import sys
import struct
import grpc
from tritonclient.grpc import service_pb2, service_pb2_grpc
import tritonclient.grpc.model_config_pb2 as mc
FLAGS = None
def model_dtype_to_np(model_dtype):
if model_dtype == "BOOL":
return bool
elif model_dtype == "INT8":
return np.int8
elif model_dtype == "INT16":
return np.int16
elif model_dtype == "INT32":
return np.int32
elif model_dtype == "INT64":
return np.int64
elif model_dtype == "UINT8":
return np.uint8
elif model_dtype == "UINT16":
return np.uint16
elif model_dtype == "FP16":
return np.float16
elif model_dtype == "FP32":
return np.float32
elif model_dtype == "FP64":
return np.float64
elif model_dtype == "BYTES":
return np.dtype(object)
return None
def deserialize_bytes_tensor(encoded_tensor):
strs = list()
offset = 0
val_buf = encoded_tensor
while offset < len(val_buf):
l = struct.unpack_from("<I", val_buf, offset)[0]
offset += 4
sb = struct.unpack_from("<{}s".format(l), val_buf, offset)[0]
offset += l
strs.append(sb)
return (np.array(strs, dtype=np.object_))
def parse_model(model_metadata, model_config):
"""
Check the configuration of a model to make sure it meets the
requirements for an image classification network (as expected by
this client)
"""
if len(model_metadata.inputs) != 1:
raise Exception("expecting 1 input, got {}".format(
len(model_metadata.inputs)))
if len(model_metadata.outputs) != 1:
raise Exception("expecting 1 output, got {}".format(
len(model_metadata.outputs)))
if len(model_config.input) != 1:
raise Exception(
"expecting 1 input in model configuration, got {}".format(
len(model_config.input)))
input_metadata = model_metadata.inputs[0]
input_config = model_config.input[0]
output_metadata = model_metadata.outputs[0]
if output_metadata.datatype != "FP32":
raise Exception("expecting output datatype to be FP32, model '" +
model_metadata.name + "' output type is " +
output_metadata.datatype)
# Output is expected to be a vector. But allow any number of
# dimensions as long as all but 1 is size 1 (e.g. { 10 }, { 1, 10
# }, { 10, 1, 1 } are all ok). Ignore the batch dimension if there
# is one.
output_batch_dim = (model_config.max_batch_size > 0)
non_one_cnt = 0
for dim in output_metadata.shape:
if output_batch_dim:
output_batch_dim = False
elif dim > 1:
non_one_cnt += 1
if non_one_cnt > 1:
raise Exception("expecting model output to be a vector")
# Model input must have 3 dims, either CHW or HWC (not counting
# the batch dimension), either CHW or HWC
input_batch_dim = (model_config.max_batch_size > 0)
expected_input_dims = 3 + (1 if input_batch_dim else 0)
if len(input_metadata.shape) != expected_input_dims:
raise Exception(
"expecting input to have {} dimensions, model '{}' input has {}".
format(expected_input_dims, model_metadata.name,
len(input_metadata.shape)))
if ((input_config.format != mc.ModelInput.FORMAT_NCHW) and
(input_config.format != mc.ModelInput.FORMAT_NHWC)):
raise Exception("unexpected input format " +
mc.ModelInput.Format.Name(input_config.format) +
", expecting " +
mc.ModelInput.Format.Name(mc.ModelInput.FORMAT_NCHW) +
" or " +
mc.ModelInput.Format.Name(mc.ModelInput.FORMAT_NHWC))
if input_config.format == mc.ModelInput.FORMAT_NHWC:
h = input_metadata.shape[1 if input_batch_dim else 0]
w = input_metadata.shape[2 if input_batch_dim else 1]
c = input_metadata.shape[3 if input_batch_dim else 2]
else:
c = input_metadata.shape[1 if input_batch_dim else 0]
h = input_metadata.shape[2 if input_batch_dim else 1]
w = input_metadata.shape[3 if input_batch_dim else 2]
return (model_config.max_batch_size, input_metadata.name,
output_metadata.name, c, h, w, input_config.format,
input_metadata.datatype)
def preprocess(img, format, dtype, c, h, w, scaling):
"""
Pre-process an image to meet the size, type and format
requirements specified by the parameters.
"""
#np.set_printoptions(threshold='nan')
if c == 1:
sample_img = img.convert('L')
else:
sample_img = img.convert('RGB')
resized_img = sample_img.resize((w, h), Image.BILINEAR)
resized = np.array(resized_img)
if resized.ndim == 2:
resized = resized[:, :, np.newaxis]
npdtype = model_dtype_to_np(dtype)
typed = resized.astype(npdtype)
if scaling == 'INCEPTION':
scaled = (typed / 127.5) - 1
elif scaling == 'VGG':
if c == 1:
scaled = typed - np.asarray((128,), dtype=npdtype)
else:
scaled = typed - np.asarray((123, 117, 104), dtype=npdtype)
else:
scaled = typed
# Swap to CHW if necessary
if format == mc.ModelInput.FORMAT_NCHW:
ordered = np.transpose(scaled, (2, 0, 1))
else:
ordered = scaled
# Channels are in RGB order. Currently model configuration data
# doesn't provide any information as to other channel orderings
# (like BGR) so we just assume RGB.
return ordered
def postprocess(response, filenames, batch_size, supports_batching):
"""
Post-process response to show classifications.
"""
if len(response.outputs) != 1:
raise Exception("expected 1 output, got {}".format(len(
response.outputs)))
if len(response.raw_output_contents) != 1:
raise Exception("expected 1 output content, got {}".format(
len(response.raw_output_contents)))
batched_result = deserialize_bytes_tensor(response.raw_output_contents[0])
contents = np.reshape(batched_result, response.outputs[0].shape)
if supports_batching and len(contents) != batch_size:
raise Exception("expected {} results, got {}".format(
batch_size, len(contents)))
if supports_batching and len(filenames) != batch_size:
raise Exception("expected {} filenames, got {}".format(
batch_size, len(filenames)))
if not supports_batching:
contents = [contents]
for (index, results) in enumerate(contents):
print("Image '{}':".format(filenames[index]))
for result in results:
cls = "".join(chr(x) for x in result).split(':')
print(" {} ({}) = {}".format(cls[0], cls[1], cls[2]))
def requestGenerator(input_name, output_name, c, h, w, format, dtype, FLAGS,
result_filenames, supports_batching):
request = service_pb2.ModelInferRequest()
request.model_name = FLAGS.model_name
request.model_version = FLAGS.model_version
filenames = []
if os.path.isdir(FLAGS.image_filename):
filenames = [
os.path.join(FLAGS.image_filename, f)
for f in os.listdir(FLAGS.image_filename)
if os.path.isfile(os.path.join(FLAGS.image_filename, f))
]
else:
filenames = [
FLAGS.image_filename,
]
filenames.sort()
output = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
output.name = output_name
output.parameters['classification'].int64_param = FLAGS.classes
request.outputs.extend([output])
input = service_pb2.ModelInferRequest().InferInputTensor()
input.name = input_name
input.datatype = dtype
if format == mc.ModelInput.FORMAT_NHWC:
input.shape.extend(
[FLAGS.batch_size, h, w, c] if supports_batching else [h, w, c])
else:
input.shape.extend(
[FLAGS.batch_size, c, h, w] if supports_batching else [c, h, w])
# Preprocess image into input data according to model requirements
# Preprocess the images into input data according to model
# requirements
image_data = []
for filename in filenames:
img = Image.open(filename)
image_data.append(preprocess(img, format, dtype, c, h, w,
FLAGS.scaling))
# Send requests of FLAGS.batch_size images. If the number of
# images isn't an exact multiple of FLAGS.batch_size then just
# start over with the first images until the batch is filled.
image_idx = 0
last_request = False
while not last_request:
input_bytes = None
input_filenames = []
request.ClearField("inputs")
request.ClearField("raw_input_contents")
for idx in range(FLAGS.batch_size):
input_filenames.append(filenames[image_idx])
if input_bytes is None:
input_bytes = image_data[image_idx].tobytes()
else:
input_bytes += image_data[image_idx].tobytes()
image_idx = (image_idx + 1) % len(image_data)
if image_idx == 0:
last_request = True
request.inputs.extend([input])
result_filenames.append(input_filenames)
request.raw_input_contents.extend([input_bytes])
yield request
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-a',
'--async',
dest="async_set",
action="store_true",
required=False,
default=False,
help='Use asynchronous inference API')
parser.add_argument('--streaming',
action="store_true",
required=False,
default=False,
help='Use streaming inference API')
parser.add_argument('-m',
'--model-name',
type=str,
required=True,
help='Name of model')
parser.add_argument(
'-x',
'--model-version',
type=str,
required=False,
default="",
help='Version of model. Default is to use latest version.')
parser.add_argument('-b',
'--batch-size',
type=int,
required=False,
default=1,
help='Batch size. Default is 1.')
parser.add_argument('-c',
'--classes',
type=int,
required=False,
default=1,
help='Number of class results to report. Default is 1.')
parser.add_argument(
'-s',
'--scaling',
type=str,
choices=['NONE', 'INCEPTION', 'VGG'],
required=False,
default='NONE',
help='Type of scaling to apply to image pixels. Default is NONE.')
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8001',
help='Inference server URL. Default is localhost:8001.')
parser.add_argument('image_filename',
type=str,
nargs='?',
default=None,
help='Input image / Input folder.')
FLAGS = parser.parse_args()
# Create gRPC stub for communicating with the server
channel = grpc.insecure_channel(FLAGS.url)
grpc_stub = service_pb2_grpc.GRPCInferenceServiceStub(channel)
# Make sure the model matches our requirements, and get some
# properties of the model that we need for preprocessing
metadata_request = service_pb2.ModelMetadataRequest(
name=FLAGS.model_name, version=FLAGS.model_version)
metadata_response = grpc_stub.ModelMetadata(metadata_request)
config_request = service_pb2.ModelConfigRequest(name=FLAGS.model_name,
version=FLAGS.model_version)
config_response = grpc_stub.ModelConfig(config_request)
max_batch_size, input_name, output_name, c, h, w, format, dtype = parse_model(
metadata_response, config_response.config)
supports_batching = max_batch_size > 0
if not supports_batching and FLAGS.batch_size != 1:
raise Exception("This model doesn't support batching.")
# Send requests of FLAGS.batch_size images. If the number of
# images isn't an exact multiple of FLAGS.batch_size then just
# start over with the first images until the batch is filled.
requests = []
responses = []
result_filenames = []
# Send request
if FLAGS.streaming:
for response in grpc_stub.ModelStreamInfer(
requestGenerator(input_name, output_name, c, h, w, format,
dtype, FLAGS, result_filenames,
supports_batching)):
responses.append(response)
else:
for request in requestGenerator(input_name, output_name, c, h, w,
format, dtype, FLAGS, result_filenames,
supports_batching):
if not FLAGS.async_set:
responses.append(grpc_stub.ModelInfer(request))
else:
requests.append(grpc_stub.ModelInfer.future(request))
# For async, retrieve results according to the send order
if FLAGS.async_set:
for request in requests:
responses.append(request.result())
error_found = False
idx = 0
for response in responses:
if FLAGS.streaming:
if response.error_message != "":
error_found = True
print(response.error_message)
else:
postprocess(response.infer_response, result_filenames[idx],
FLAGS.batch_size, supports_batching)
else:
postprocess(response, result_filenames[idx], FLAGS.batch_size,
supports_batching)
idx += 1
if error_found:
sys.exit(1)
print("PASS")