-
Notifications
You must be signed in to change notification settings - Fork 29
/
index.html
617 lines (607 loc) · 39.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
---
title: "The Accord.NET Framework"
---
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Accord.NET is a .NET machine learning framework combined with audio and image processing libraries completely written in C# ready to be used in commercial applications.">
<meta property="og:image" content="http://accord-framework.net/images/accord-logo.png" />
<meta property="og:url" content="http://accord-framework.net/" />
<meta property="og:title" content="Accord.NET Machine Learning Framework" />
<meta property="og:description" content="Accord.NET is a .NET machine learning framework combined with audio and image processing libraries completely written in C# ready to be used in commercial applications.">
<title>Accord.NET Machine Learning Framework</title>
<link rel="author" href="https://plus.google.com/+cesarrsouza/" />
<link rel="image_src" type="image/png" href="images/accord-logo.png" />
<link rel="shortcut icon" href="favicon.ico">
<link rel="stylesheet" type="text/css" href="content/jquery.powertip.css" />
<link rel="stylesheet" type="text/css" href="content/bootstrap.min.css">
<link rel="stylesheet" href="content/common.css" />
<link rel="stylesheet" href="content/index.css" />
<script type="text/javascript" src="scripts/jquery-2.1.3.js"></script>
<script type="text/javascript" src="scripts/jquery-migrate-1.2.1.js"></script>
<script type="text/javascript" src="scripts/jquery.vibrate.js"></script>
<script type="text/javascript" src="scripts/jquery.powertip.js"></script>
<script type="text/javascript" src="scripts/jquery.quicksand.js"></script>
<script type='text/javascript' src="scripts/bootstrap.js"></script>
<script type='text/javascript' src="scripts/bootbox.js"></script>
<!--[if lt IE 9]>
<script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
</head>
<script type="text/javascript">
$(document).ready(function () {
$("#accord-logo").hide();
$("#accord-logo").fadeIn(1200);
var paypal = $('#paypal');
paypal.vibrate({
start: 1000,
speed: 5,
duration: 1000,
frequency: 10000,
spread: 6,
angle: 25,
});
paypal.data('powertip', $('#paypal-tooltip').html());
paypal.powerTip({ placement: 'w', mouseOnToPopup: true });
paypal.mouseover(function () {
paypal.stopVibrate();
});
setTimeout(function () { $.powerTip.show(paypal); }, 2000);
$(window).scroll(function () {
setTimeout(function () { $.powerTip.hide(paypal); }, 2000);
});
var bitcoin = $('#bitcoin');
bitcoin.data('powertip', $('#bitcoin-tooltip').html());
bitcoin.powerTip({ placement: 'w', mouseOnToPopup: true });
});
</script>
<body>
{% include navbar.html %}
<!-- Begin Facebook Javascript SDK -->
<div id="fb-root">
</div>
<script>
(function (d, s, id) {
var js, fjs = d.getElementsByTagName(s)[0];
if (d.getElementById(id)) return;
js = d.createElement(s); js.id = id;
js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
fjs.parentNode.insertBefore(js, fjs);
}(document, 'script', 'facebook-jssdk'));</script>
<!-- End Facebook Javascript SDK -->
<div id="content-wrapper">
<header>
<div id="left-buttons">
</div>
<div id="right-buttons">
{% include right-icon-bar.html %}
</div>
<a id="accord-logo" href="intro.html">
<img src="images/accord-logo.png" alt="Machine Learning .NET" />
<p>
{{ site.framework.version }}
</p>
</a>
<div id="download-buttons">
<ul>
<li><a href="{{ site.framework.download-installer }}">Download <strong>Installer</strong></a></li>
<li><a href="{{ site.framework.download-archive }}">Download <strong>Archive</strong></a></li>
<li><a href="https://github.com/accord-net/framework/wiki">Read the <strong>Manual</strong></a></li>
<li><a href="http://accord-framework.net/docs/Index.html">Consult the <strong>.NET API</strong></a></li>
<li><a href="https://github.com/accord-net/framework/">Fork On <strong>GitHub</strong></a></li>
</ul>
</div>
</header>
<section>
<div class="section-title">
<h1>
<a href="intro.html">Machine learning made <strong>in a minute</strong></a>
</h1>
<p>
The <strong>Accord.NET Framework</strong> is a .NET machine learning framework combined
with audio and image processing libraries completely written in C#. It is a complete
framework for building production-grade computer vision, computer audition, signal
processing and statistics applications even <strong>for commercial use</strong>.
A comprehensive set of <a href="http://accord-framework.net/samples.html">sample applications</a>
provide a fast start to get up and running quickly, and an extensive documentation and
<a href="https://github.com/accord-net/framework/wiki">wiki</a> helps fill in
the details.
</p>
</div>
<div class="section-content">
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Classification">
<img src="images/samples/accord-statistics-analysis-(kda).png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Classification">Classification</a>.
</h3>
<p>
<a href="http://accord-framework.net/docs/html/N_Accord_MachineLearning_VectorMachines.htm">
Support Vector Machines
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_LogisticRegression.htm">
Logistic Regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_DecisionTrees_DecisionTree.htm">
Decision Trees
</a>, <a href="http://accord-framework.net/docs/html/N_Accord_Neuro.htm">
Neural Networks
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Neuro_Networks_DeepBeliefNetwork.htm">
Deep Learning (Deep Neural Networks)
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Neuro_Learning_LevenbergMarquardtLearning.htm">
Levenberg-Marquardt with Bayesian Regularization
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Neuro_Networks_RestrictedBoltzmannMachine.htm">
Restricted Boltzmann Machines
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Markov_Learning_HiddenMarkovClassifierLearning.htm">
Sequence classification
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Markov_HiddenMarkovClassifier.htm">
Hidden Markov Classifiers
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Fields_HiddenConditionalRandomField_1.htm">
Hidden Conditional Random Fields
</a>.
</p>
</div>
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Regression">
<img src="images/samples/accord-machinelearning-regression-svm.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Regression">Regression</a>.
</h3>
<p>
<a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_Linear_MultipleLinearRegression.htm">
Multiple linear regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_Linear_MultivariateLinearRegression.htm">
Multivariate linear regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_Linear_PolynomialRegression.htm">
polynomial regression
</a>, logarithmic regression. <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_LogisticRegression.htm">
Logistic regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_MultinomialLogisticRegression.htm">
multinomial logistic regression (softmax)
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Models_Regression_GeneralizedLinearRegression.htm">
generalized linear models
</a>. <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticNewtonMethod.htm">
L2-regularized L2-loss logistic regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticDualCoordinateDescent.htm">
L2-regularized logistic regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticCoordinateDescent.htm">
L1-regularized logistic regression
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticDualCoordinateDescent.htm">
L2-regularized logistic regression in the dual form
</a>
and <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_SequentialMinimalOptimizationRegression.htm">
regression support vector machines
</a>.
</p>
</div>
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Clustering">
<img src="images/samples/accord-machinelearning-clustering-meanshift-kmeans.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Clustering">Clustering</a>.
</h3>
<p>
<a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_KMeans.htm">
K-Means
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_KModes.htm">
K-Modes
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_MeanShift.htm">
Mean-Shift
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_GaussianMixtureModel.htm">
Gaussian Mixture Models
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_BinarySplit.htm">
Binary Split
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Neuro_Networks_DeepBeliefNetwork.htm">
Deep Belief Networks
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Neuro_Networks_RestrictedBoltzmannMachine.htm">
Restricted Boltzmann Machines
</a>. Clustering algorithms
can be applied in arbitrary data, <a href="https://github.com/accord-net/framework/wiki/Sample-applications#color-clustering-kmeans-and-meanshift">
including images
</a>, data tables, videos and <a href="https://github.com/accord-net/framework/wiki/Audio">
audio
</a>.
</p>
</div>
</div>
<div class="section-content">
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Distributions">
<img src="images/misc/gaussians.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Distributions">Distributions</a>.
</h3>
<p>
Parametric and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_EmpiricalDistribution.htm">
non-parametric estimation
</a> of more than 40 distributions. <a href="http://accord-framework.net/docs/html/N_Accord_Statistics_Distributions_Univariate.htm">
Univariate
</a> distributions such as <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_NormalDistribution.htm">
Normal
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_CauchyDistribution.htm">
Cauchy
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_HypergeometricDistribution.htm">
Hypergeometric
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_PoissonDistribution.htm">
Poisson
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_BernoulliDistribution.htm">
Bernoulli
</a>, and specialized distributions such as
the <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_KolmogorovSmirnovDistribution.htm">
Kolmogorov-Smirnov
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_NakagamiDistribution.htm">
Nakagami
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_WeibullDistribution.htm">
Weibull
</a>, and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Univariate_VonMisesDistribution.htm">
Von-Mises
</a> distributions. <a href="http://accord-framework.net/docs/html/N_Accord_Statistics_Distributions_Multivariate.htm">
Multivariate
</a> distributions such as the <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Multivariate_MultivariateNormalDistribution.htm">
multivariate Normal
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Multivariate_MultinomialDistribution.htm">
Multinomial
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Multivariate_Independent_1.htm">
Independent
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Multivariate_JointDistribution.htm">
Joint
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Distributions_Multivariate_MultivariateMixture_1.htm">
Mixture distributions
</a>.
</p>
</div>
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Hypothesis-Tests">
<img src="images/misc/gaussian.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Hypothesis-Tests">Hypothesis Tests</a>.
</h3>
<p>
More than <a href="http://accord-framework.net/docs/html/N_Accord_Statistics_Testing.htm">
35 statistical hypothesis tests
</a>, including <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_OneWayAnova.htm">
one way
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_TwoWayAnova.htm">
two-way ANOVA tests
</a>, non-parametric tests such as the <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_KolmogorovSmirnovTest.htm">
Kolmogorov-Smirnov test
</a> and the <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_SignTest.htm">
Sign Test for the Median
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Analysis_GeneralConfusionMatrix.htm">
contingency table
</a> tests such as the <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_KappaTest.htm">
Kappa test
</a>, with variations for <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_AverageKappaTest.htm">
multiple tables
</a>, as well as the <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_BhapkarTest.htm">
Bhapkar
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_BowkerTest.htm">
Bowker
</a> tests; and the more traditional
<a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_ChiSquareTest.htm">
Chi-Square
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_ZTest.htm">
Z
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_FTest.htm">
F
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_TTest.htm">
T
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Statistics_Testing_WaldTest.htm">
Wald tests
</a>.
</p>
</div>
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Kernel-Methods">
<img src="images/samples/accord-statistics-analysis-kpca.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Kernel-Methods">Kernel Methods</a>.
</h3>
<p>
<a href="http://accord-framework.net/docs/html/N_Accord_MachineLearning_VectorMachines.htm">
Kernel Support Vector Machines
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_MulticlassSupportVectorMachine.htm">
Multi-class
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_MultilabelSupportVectorMachine.htm">
Multi-label machines
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_SequentialMinimalOptimization.htm">
Sequential Minimal Optimization
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_LeastSquaresLearning.htm">
Least-Squares Learning
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticOutputCalibration.htm">
probabilistic learning
</a>, including special methods for
<a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_SupportVectorMachine.htm">
linear machines
</a> such as LIBLINEAR's methods for <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_LinearCoordinateDescent.htm">
Linear Coordinate Descent
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_LinearNewtonMethod.htm">
Linear Newton Method
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticCoordinateDescent.htm">
Probabilistic Coordinate Descent
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticDualCoordinateDescent.htm">
Probabilistic Coordinate Descent in the Dual
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_MachineLearning_VectorMachines_Learning_ProbabilisticNewtonMethod.htm">
Probabilistic Newton Method for L1 and L2 machines in both the dual and primal formulations
</a>.
</p>
</div>
</div>
<div class="section-content">
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Imaging">
<img src="images/samples/accord-imaging-surf.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Imaging">Imaging</a>.
</h3>
<p>
Interest and feature point detectors such as <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_HarrisCornersDetector.htm">
Harris
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_FastRetinaKeypoint.htm">
FREAK
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_SpeededUpRobustFeaturesDetector.htm">
SURF
</a>, and <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_FastCornersDetector.htm">
FAST
</a>. <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_GrayLevelCooccurrenceMatrix.htm">
Grey-level Co-occurrence matrices
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_BorderFollowing.htm">
Border following
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_BagOfVisualWords.htm">
Bag-of-Visual-Words (BoW)
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_RansacHomographyEstimator.htm">
RANSAC-based homography estimation
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_IntegralImage2.htm">
integral images
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_Haralick.htm">
haralick textural feature extraction
</a>,
and dense descriptors such as <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_HistogramsOfOrientedGradients.htm">
histogram of oriented gradients (HOG)
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_LocalBinaryPattern.htm">
Local Binary Pattern (LBP)
</a>. Several <a href="http://accord-framework.net/docs/html/N_Accord_Imaging_Filters.htm">
image filters for image processing applications
</a> such as <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_Filters_DifferenceOfGaussians.htm">
difference of Gaussians
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_Filters_GaborFilter.htm">
Gabor
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_Filters_NiblackThreshold.htm">
Niblack
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Imaging_Filters_SauvolaThreshold.htm">
Sauvola thresholding
</a>.
</p>
</div>
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Audio">
<img src="images/samples/accord-audio-recording.png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Audio">Audio and Signal</a>.
</h3>
<p>
Load, parse, save, filter and transform <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Signal.htm">
audio signals
</a>, such as applying <a href="http://accord-framework.net/docs/html/N_Accord_Audio_Filters.htm">
audio processing filters
</a> in both space and <a href="http://accord-framework.net/docs/html/T_Accord_Audio_ComplexSignal.htm">
frequency domain
</a>. <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Formats_WaveDecoder.htm">
WAV files
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_DirectSound_AudioCaptureDevice.htm">
audio capture
</a>, time-domain filters such as <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Filters_EnvelopeFilter.htm">
envelope
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Filters_HighPassFilter.htm">
high-pass
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Filters_LowPassFilter.htm">
low-pass
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Filters_WaveRectifier.htm">
wave rectification
</a> filters. Frequency-domain
operators such as <a href="http://accord-framework.net/docs/html/T_Accord_Audio_ComplexFilters_DifferentialRectificationFilter.htm">
differential rectification filter
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Audio_ComplexFilters_CombFilter.htm">
comb filter with Dirac's delta functions
</a>. Signal generators for <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Generators_CosineGenerator.htm">
Cosine
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Generators_ImpulseGenerator.htm">
Impulse
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Audio_Generators_SquareGenerator.htm">
Square
</a> signals.
</p>
</div>
<div class="section-panel">
<a href="https://github.com/accord-net/framework/wiki/Vision">
<img src="images/samples/accord-vision-face-tracking-(camshift).png" />
</a>
<h3>
<a href="https://github.com/accord-net/framework/wiki/Vision">Vision</a>.
</h3>
<p>
<a href="http://accord-framework.net/docs/html/T_Accord_Vision_Detection_HaarObjectDetector.htm">
Real-time face detection
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Vision_Tracking_Camshift.htm">
tracking
</a>, as well as general methods for <a href="http://accord-framework.net/docs/html/T_Accord_Vision_GroupMatching.htm">
detecting
</a>, <a href="http://accord-framework.net/docs/html/N_Accord_Vision_Tracking.htm">
tracking
</a> and <a href="http://accord-framework.net/docs/html/N_Accord_Imaging.htm">
transforming objects in image streams
</a>. Contains <a href="http://accord-framework.net/docs/html/N_Accord_Vision_Detection_Cascades.htm">
cascade definitions
</a>, <a href="http://accord-framework.net/docs/html/T_Accord_Vision_Tracking_Camshift.htm">
Camshift
</a> and <a href="http://accord-framework.net/docs/html/T_Accord_Vision_Tracking_MatchingTracker.htm">
Dynamic Template Matching trackers
</a>. Includes
<a href="http://accord-framework.net/docs/html/T_Accord_Vision_Detection_Cascades_FaceHaarCascade.htm">
pre-created classifiers for human faces
</a> and some facial features such as
<a href="http://accord-framework.net/docs/html/T_Accord_Vision_Detection_Cascades_NoseHaarCascade.htm">
noses
</a>.
</p>
</div>
</div>
<div>
<h1>
<a href="get-started.html">Get started now!</a>
</h1>
</div>
<div class="section-content">
<div class="section-panel">
<a href="samples.html">
<img src="images/metro/appbar.candy.cane.png" />
</a>
<h3>
<a href="samples.html">Sample applications</a>.
</h3>
<p>
Sample applications help you start writing your applications quickly. Just <a href="https://github.com/accord-net/framework/wiki/Sample-applications">
get one of the sample applications that is closest to your goal
</a>, and start
from there.
</p>
</div>
<div class="section-panel">
<a href="publications.html">
<img src="images/metro/appbar.puzzle.round.png" />
</a>
<h3>
<a href="publications.html">Create and test new learning algorithms with ease</a>.
</h3>
<p>
Strategy and template method patterns help you swap learning algorithms quickly.
Create, build and compare different approaches without delving too deep in code.
Check a <a href="publications.html">
list of works that have been made possible with
the framework
</a>.
</p>
</div>
<div class="section-panel">
<a href="http://stackoverflow.com/questions/ask?tags=accord.net">
<img src="images/metro/appbar.speakerphone.png" />
</a>
<h3>
<a href="http://stackoverflow.com/questions/ask?tags=accord.net">Ask your questions</a>.
</h3>
<p>
Stackoverflow is <a href="http://stackoverflow.com/questions/tagged/accord.net">
continuously monitored for new questions containing the "Accord.NET" tag</a>. Ask your new
question and mark it with this tag, and it will be answered in a minute by the framework
authors and the user community.
</p>
</div>
</div>
<div class="section-footer">
<p>
<strong>Note:</strong> If you would like to ask questions concerning the framework
itself, such as questions on <i>"why"</i> something was done in a particular way,
suggestions and general discussions, <b>do not use Stackoverflow</b> - please refer
to the<a href="https://github.com/accord-net/framework/issues">
project's issue tracker and mark your issue with the "question" tag</a> instead.
For bugs and feature requests, please also use <a href="https://github.com/accord-net/framework/issues">
issue tracker</a>. If the project has been useful for you, please
consider <a href="https://github.com/accord-net/framework/wiki">
helping us improve the wiki</a>. Thanks!
</p>
<!--<p>
Due to popular demand, you can also acquire a non-exclusive license over individual parts
of the framework under particular terms. Although the framework is free and will always stay
free, some companies may feel safer to use the software if they have signed a proper license
agreement allowing them to do so. Please send a mail to <a href="mailto:licenses@accord-framework.net">
licenses@accord-framework.net
</a> if you think your company would fit in this case.
</p>-->
</div>
<div class="openhub-stats">
<div class="openhub-factoids">
<script type="text/javascript" src="http://www.openhub.net/p/484220/widgets/project_factoids_stats.js"></script>
</div>
<div class="openhub-banner">
<script type="text/javascript" src="http://www.openhub.net/p/484220/widgets/project_partner_badge.js"></script>
</div>
</div>
</section>
</div>
<footer>
<div class="footer-contents">
<ul>
<li><strong>.NET Framework</strong></li>
<li><a href="https://github.com/cureos/accord">Windows Phone</a> </li>
<li><a href="https://github.com/DiegoCatalano/Catalano-Framework">Android</a></li>
<li><a href="http://xamarin.com/">iOS</a> </li>
<li><a href="https://github.com/DiegoCatalano/Catalano-Framework">Java</a>
<li>
<div class="fb-like" data-href="http://accord-framework.net" data-layout="button_count"
data-action="recommend" data-show-faces="true" data-share="true">
</div>
</li>
</ul>
<div class="hr"></div>
<div class="copyright">
Copyright © 2008-{{ site.time | date: '%Y' }}
</div>
</div>
</footer>
<div id="paypal-tooltip" style="display: none">
<p>
Have you found this software useful?
<br />
Consider donating just <strong>US$10</strong>
<br />
so it can get even better!
</p>
<form action="https://www.paypal.com/cgi-bin/webscr" method="post" target="_top">
<input type="hidden" name="cmd" value="_s-xclick">
<input type="hidden" name="hosted_button_id" value="N4Q6YQSPWN8BG">
<input type="image" src="https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif"
border="0" name="submit" alt="PayPal - The safer, easier way to pay online!">
<img alt="" border="0" src="https://www.paypalobjects.com/pt_BR/i/scr/pixel.gif"
width="1" height="1">
</form>
<p>
This software is completely free and will<br />
<strong>always stay free</strong>
. Enjoy!
</p>
</div>
<div id="bitcoin-tooltip" style="display: none">
<p>
The project also accepts donations in Bitcoins, Ethereum, and
<br />
Litecoins. Please consider donating so it can be even better!
</p>
<h2>Bitcoin:</h2>
<img src="images/misc/bitcoin-address.png" alt="Bitcoin address" width="50%" head="50%" />
<h2>Other currencies:</h2>
<p>
<ul style="font-family: monospace; text-align: left">
<li>BTC: <a href="bitcoin:1FC5gxLs2TsvuiHPP1tRLh5mPboQJQghvZ" >1FC5gxLs2TsvuiHPP1tRLh5mPboQJQghvZ</a></li>
<li>ETH: 0x36FDA635Ef5773d8B376037D7BAfF22FeB987d92</li>
<li>LTC: LNjkZkMdSyncUvg5WnnhDNirdux4Q95gdt</li>
</ul>
<p>
All donations are strictly used towards improving the project, such<br/>
as by <strong>hiring more developers to fix issues in the <a href="https://github.com/accord-net/framework/issues">issue tracker</a></strong>.
</p>
<p>
This software is completely free and will <strong>always stay free</strong>. Enjoy!
</p>
</div>
</body>
<!-- {% include analytics.html %} -->
</html>