-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
210 lines (188 loc) · 5.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
import matplotlib.pyplot as plt
import numpy as np
from metric_functions import *
from module_functions import *
from get_datasets import *
dim_pca = None # None or a number; cannot use CNN with this "on"
n_runs = 1
epochs = 10
read_model_from_file = False
l2_reg_on_nn = False
data_name = "20news"
original_data_name = data_name
if dim_pca is not None:
data_name+="PCA"
ae_type = "mlp" #@param ["mlp", "cnn"]
dist_type = "normal" #@param ["normal", "cauchy"]
encoder_depth = "0" #@param [0, 1, 2]
encoder_depth = int(encoder_depth)
nn_depth = "2" #@param [0, 1, 2, 3]
nn_depth = int(nn_depth)
lambdaa = 50.0 # [0,inf); for std
cl_loss_type = "km" # "km", "gmm"
id = f"{cl_loss_type}_{ae_type}_{dist_type}_{encoder_depth}_{nn_depth}_{int(lambdaa)}"
random_id = f"random_{id}"
print(id)
general_directory = "."
var_features = True # True/False
var_locs = False # True/False
reg_logits = False # True/False
kl_loss = False # True/False
logits_trainable = False # True/False
locs_trainable = False # True/False
covs_trainable = False # True/False
loc_inner_value = 1.0
# number_of_dist = 10
if original_data_name == "mnist":
samples, real_labels = get_data_mnist()
elif original_data_name == "20news":
samples, real_labels = get_data_20news()
elif original_data_name == "usps":
samples, real_labels = get_data_usps()
number_of_dist = len(np.unique(real_labels))
print(number_of_dist)
import math
if ae_type == "cnn":
samples = samples.reshape((-1,
int(math.sqrt(samples.shape[1])),
int(math.sqrt(samples.shape[1])),
1))
BATCH_SIZE = 128
SHUFFLE_BUFFER_SIZE = 1024
prob_d = number_of_dist
last_layer_decoder_activation = 'sigmoid'
last_layer_nn_activation = 'linear'
default_activation = 'tanh'
plot_at_each_iteration = True
if ae_type == "mlp":
ds_encoder = [128,64] # [64,128]/[64] for "cnn"; [increasing] for "mlp"
else:
ds_encoder = [64,128]
ds_nn = [32,prob_d]
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) # learning_rate=0.00001; era 0.001
# lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
# initial_learning_rate=1e-2,
# decay_steps=10000,
# decay_rate=0.9)
# optimizer = tf.keras.optimizers.SGD(learning_rate=lr_schedule)
if dim_pca is not None:
import numpy as np
from sklearn.decomposition import PCA
X = samples
pca = PCA(n_components=dim_pca)
samples = pca.fit_transform(X)
random_mean_losses = []
random_clusterings = []
best_mean_losses = []
clusterings = []
for run in range(n_runs):
print(run)
random_mean_loss,random_clustering, best_mean_loss,clustering = main(read_model_from_file,
run,
samples,
ae_type,
dist_type,
encoder_depth,
nn_depth,
id,
random_id,
data_name,
general_directory,
lambdaa,
cl_loss_type,
var_features,
var_locs,
reg_logits,
kl_loss,
logits_trainable,
locs_trainable,
covs_trainable,
loc_inner_value,
number_of_dist,
BATCH_SIZE,
SHUFFLE_BUFFER_SIZE,
prob_d,
last_layer_decoder_activation,
last_layer_nn_activation,
default_activation,
plot_at_each_iteration,
ds_encoder,
ds_nn,
optimizer,
epochs,
l2_reg_on_nn)
random_mean_losses.append(random_mean_loss)
random_clusterings.append(random_clustering)
best_mean_losses.append(best_mean_loss)
clusterings.append(clustering)
import numpy as np
random_index = np.argmin(random_mean_losses)
final_random_clustering = random_clusterings[random_index]
final_random_metrics = [purity_score(real_labels,final_random_clustering),
adjusted_rand_score(real_labels,final_random_clustering),
normalized_mutual_info_score(real_labels,final_random_clustering),
accuracy(real_labels,final_random_clustering)]
random_path = os.path.join(general_directory,data_name,random_id,"final_random_metrics.txt")
f = open(random_path, "w")
f.writelines([str(x)+"\n" for x in final_random_metrics])
f.close()
import numpy as np
index = np.argmin(best_mean_losses)
final_clustering = clusterings[index]
final_metrics = [purity_score(real_labels,final_clustering),
adjusted_rand_score(real_labels,final_clustering),
normalized_mutual_info_score(real_labels,final_clustering),
accuracy(real_labels,final_clustering)]
path = os.path.join(general_directory,data_name,id,"final_metrics.txt")
f = open(path, "w")
f.writelines([str(x)+"\n" for x in final_metrics])
f.close()
random_mean_losses = []
random_clusterings = []
best_mean_losses = []
clusterings = []
for run in range(n_runs):
print(run)
random_mean_loss,random_clustering, best_mean_loss,clustering = main(True,
run,
samples,
ae_type,
dist_type,
encoder_depth,
nn_depth,
id,
random_id,
data_name,
general_directory,
lambdaa,
cl_loss_type,
var_features,
var_locs,
reg_logits,
kl_loss,
logits_trainable,
locs_trainable,
covs_trainable,
loc_inner_value,
number_of_dist,
BATCH_SIZE,
SHUFFLE_BUFFER_SIZE,
prob_d,
last_layer_decoder_activation,
last_layer_nn_activation,
default_activation,
plot_at_each_iteration,
ds_encoder,
ds_nn,
optimizer,
epochs,
l2_reg_on_nn)
random_mean_losses.append(random_mean_loss)
random_clusterings.append(random_clustering)
best_mean_losses.append(best_mean_loss)
clusterings.append(clustering)