forked from sungyongs/dpgn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blocks.py
373 lines (294 loc) · 14.3 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import torch
import torch.nn as nn
from torch_scatter import scatter_add, scatter_max, scatter_mean, scatter_min, scatter_mul
from utils import decompose_graph
LATENT_SIZE = 32
class GlobalBlock(nn.Module):
"""Global block, f_g.
A block that updates the global features of each graph based on
the previous global features, the aggregated features of the
edges of the graph, and the aggregated features of the nodes of the graph.
"""
def __init__(self,
in_features,
out_features,
use_edges=True,
use_nodes=True,
use_globals=True,
edge_reducer=scatter_mean,
node_reducer=scatter_mean,
custom_func=None,
device='cpu'):
super(GlobalBlock, self).__init__()
if not (use_nodes or use_edges or use_globals):
raise ValueError("At least one of use_edges, "
"use_nodes or use_globals must be True.")
self._use_edges = use_edges # not need to differentiate sent/received edges.
self._use_nodes = use_nodes
self._use_globals = use_globals
self._edge_reducer = edge_reducer
self._node_reducer = node_reducer
self.device = device
# f_g is a function R^in_features -> R^out_features
if custom_func:
# Customized function can be used for self.net instead of deafult function.
# It is highly recommended to use nn.Sequential() type.
self.net = custom_func
else:
self.net = nn.Sequential(nn.Linear(in_features, LATENT_SIZE),
nn.ReLU(),
nn.Linear(LATENT_SIZE, out_features),
)
def forward(self, graph):
# Decompose graph
node_attr, edge_index, edge_attr, global_attr = decompose_graph(graph)
senders_idx, receivers_idx = edge_index
num_edges = graph.num_edges
num_nodes = graph.num_nodes
globals_to_collect = []
if self._use_globals:
globals_to_collect.append(global_attr) # global_attr.shape=(1, d_g)
if self._use_edges:
# no need to differentiate sent/received edges.
try:
agg_edges = self._edge_reducer(edge_attr, torch.zeros(num_edges, dtype=torch.long, device=self.device), dim=0)
except:
raise ValueError("reducer should be one of scatter_* [add, mul, max, min, mean]")
globals_to_collect.append(agg_edges)
if self._use_nodes:
try:
agg_nodes = self._node_reducer(node_attr, torch.zeros(num_nodes, dtype=torch.long, device=self.device), dim=0)
except:
raise ValueError("reducer should be one of scatter_* [add, mul, max, min, mean]")
globals_to_collect.append(agg_nodes)
collected_globals = torch.cat(globals_to_collect, dim=-1)
graph.global_attr = self.net(collected_globals) # Update
return graph
class EdgeBlock(nn.Module):
"""Edge block, f_e.
Update the features of each edge based on the previous edge features,
the features of the adjacent nodes, and the global features.
"""
def __init__(self,
in_features,
out_features,
use_edges=True,
use_sender_nodes=True,
use_receiver_nodes=True,
use_globals=True,
custom_func=None):
super(EdgeBlock, self).__init__()
if not (use_edges or use_sender_nodes or use_receiver_nodes or use_globals):
raise ValueError("At least one of use_edges, use_sender_nodes, "
"use_receiver_nodes or use_globals must be True.")
self._use_edges = use_edges
self._use_sender_nodes = use_sender_nodes
self._use_receiver_nodes = use_receiver_nodes
self._use_globals = use_globals
# f_e() is a function: R^in_features -> R^out_features
if custom_func:
# Customized function can be used for self.net instead of deafult function.
# It is highly recommended to use nn.Sequential() type.
self.net = custom_func
else:
self.net = nn.Sequential(nn.Linear(in_features, LATENT_SIZE),
nn.ReLU(),
nn.Linear(LATENT_SIZE, out_features),
)
def forward(self, graph):
# Decompose graph
node_attr, edge_index, edge_attr, global_attr = decompose_graph(graph)
senders_idx, receivers_idx = edge_index
num_edges = graph.num_edges
edges_to_collect = []
if self._use_edges:
edges_to_collect.append(edge_attr)
if self._use_sender_nodes:
senders_attr = node_attr[senders_idx, :]
edges_to_collect.append(senders_attr)
if self._use_receiver_nodes:
receivers_attr = node_attr[receivers_idx, :]
edges_to_collect.append(receivers_attr)
if self._use_globals:
expanded_global_attr = global_attr.expand(num_edges, global_attr.shape[1])
edges_to_collect.append(expanded_global_attr)
collected_edges = torch.cat(edges_to_collect, dim=-1)
graph.edge_attr = self.net(collected_edges) # Update
return graph
class NodeBlock(nn.Module):
"""Node block, f_v.
Update the features of each node based on the previous node features,
the aggregated features of the received edges,
the aggregated features of the sent edges, and the global features.
"""
def __init__(self,
in_features,
out_features,
use_nodes=True,
use_sent_edges=False,
use_received_edges=True,
use_globals=True,
sent_edges_reducer=scatter_add,
received_edges_reducer=scatter_add,
custom_func=None):
"""Initialization of the NodeBlock module.
Args:
in_features: Input dimension.
If node, 2*edge(sent, received), and global are used, d_v+(2*d_e)+d_g.
h'_i = f_v(h_i, AGG(h_ij), AGG(h_ji), u)
out_features: Output dimension.
h'_i will have the dimension.
use_nodes: Whether to condition on node attributes.
use_sent_edges: Whether to condition on sent edges attributes.
use_received_edges: Whether to condition on received edges attributes.
use_globals: Whether to condition on the global attributes.
reducer: Aggregator. scatter_* [add, mul, max, min, mean]
"""
super(NodeBlock, self).__init__()
if not (use_nodes or use_sent_edges or use_received_edges or use_globals):
raise ValueError("At least one of use_received_edges, use_sent_edges, "
"use_nodes or use_globals must be True.")
self._use_nodes = use_nodes
self._use_sent_edges = use_sent_edges
self._use_received_edges = use_received_edges
self._use_globals = use_globals
self._sent_edges_reducer = sent_edges_reducer
self._received_edges_reducer = received_edges_reducer
# f_v() is a function: R^in_features -> R^out_features
if custom_func:
# Customized function can be used for self.net instead of deafult function.
# It is highly recommended to use nn.Sequential() type.
self.net = custom_func
else:
self.net = nn.Sequential(nn.Linear(in_features, LATENT_SIZE),
nn.ReLU(),
nn.Linear(LATENT_SIZE, out_features),
)
def forward(self, graph):
# Decompose graph
node_attr, edge_index, edge_attr, global_attr = decompose_graph(graph)
senders_idx, receivers_idx = edge_index
num_nodes = graph.num_nodes
nodes_to_collect = []
if self._use_nodes:
nodes_to_collect.append(node_attr)
if self._use_sent_edges:
try:
agg_sent_edges = self._sent_edges_reducer(edge_attr, senders_idx, dim=0, dim_size=num_nodes)
except:
raise ValueError("reducer should be one of scatter_* [add, mul, max, min, mean]")
nodes_to_collect.append(agg_sent_edges)
if self._use_received_edges:
try:
agg_received_edges = self._received_edges_reducer(edge_attr, receivers_idx, dim=0, dim_size=num_nodes)
except:
raise ValueError("reducer should be one of scatter_* [add, mul, max, min, mean]")
nodes_to_collect.append(agg_received_edges)
if self._use_globals:
expanded_global_attr = global_attr.expand(num_nodes, global_attr.shape[1])
nodes_to_collect.append(expanded_global_attr)
collected_nodes = torch.cat(nodes_to_collect, dim=-1)
graph.x = self.net(collected_nodes) # Update
return graph
class NodeBlockInd(NodeBlock):
"""Node-level feature transformation.
Each node is considered independently. (No edge is considered.)
Args:
in_features: input dimension of node representations.
out_features: output dimension of node representations.
(node embedding size)
(N^v, d_v) -> (N^v, out_features)
NodeBlockInd(graph) -> updated graph
"""
def __init__(self,
in_features,
out_features,
hidden_features=32,
custom_func=None):
super(NodeBlockInd, self).__init__(in_features,
out_features,
use_nodes=True,
use_sent_edges=False,
use_received_edges=False,
use_globals=False,
sent_edges_reducer=None,
received_edges_reducer=None,
custom_func=custom_func)
# Customized function
if custom_func:
# Customized function can be used for self.net instead of deafult function.
# It is highly recommended to use nn.Sequential() type.
self.net = custom_func
else:
self.hidden_features = hidden_features
self.net = nn.Sequential(nn.Linear(in_features, self.hidden_features),
nn.ReLU(),
nn.Linear(self.hidden_features, out_features),
)
class EdgeBlockInd(EdgeBlock):
"""Edge-level feature transformation.
Each edge is considered independently. (No node is considered.)
Args:
in_features: input dimension of edge representations.
out_features: output dimension of edge representations.
(edge embedding size)
(N^e, d_e) -> (N^e, out_features)
EdgeBlockInd(graph) -> updated graph
"""
def __init__(self,
in_features,
out_features,
hidden_features=32,
custom_func=None):
super(EdgeBlockInd, self).__init__(in_features,
out_features,
use_edges=True,
use_sender_nodes=False,
use_receiver_nodes=False,
use_globals=False,
custom_func=custom_func)
# Customized function
if custom_func:
# Customized function can be used for self.net instead of deafult function.
# It is highly recommended to use nn.Sequential() type.
self.net = custom_func
else:
self.hidden_features = hidden_features
self.net = nn.Sequential(nn.Linear(in_features, self.hidden_features),
nn.ReLU(),
nn.Linear(self.hidden_features, out_features),
)
class GlobalBlockInd(GlobalBlock):
"""Global-level feature transformation.
No edge/node is considered.
Args:
in_features: input dimension of global representations.
out_features: output dimension of global representations.
(global embedding size)
(1, d_g) -> (1, out_features)
GlobalBlockInd(graph) -> updated graph
"""
def __init__(self,
in_features,
out_features,
hidden_features=32,
custom_func=None):
super(GlobalBlockInd, self).__init__(in_features,
out_features,
use_edges=False,
use_nodes=False,
use_globals=True,
edge_reducer=None,
node_reducer=None,
custom_func=custom_func)
# Customized function
if custom_func:
# Customized function can be used for self.net instead of deafult function.
# It is highly recommended to use nn.Sequential() type.
self.net = custom_func
else:
self.hidden_features = hidden_features
self.net = nn.Sequential(nn.Linear(in_features, self.hidden_features),
nn.ReLU(),
nn.Linear(self.hidden_features, out_features),
)