forked from lifelib-dev/lifelib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
224 lines (185 loc) · 7.79 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""A setuptools based setup module.
See:
https://packaging.python.org/en/latest/distributing.html
https://github.com/pypa/sampleproject
"""
import os
# Always prefer setuptools over distutils
from setuptools import setup, find_packages
# To use a consistent encoding
from codecs import open
from os import path
DISTNAME = 'lifelib'
LICENSE = 'MIT License'
AUTHOR = "lifelib Developers"
EMAIL = "fumito.ham@gmail.com"
URL = "https://lifelib.io"
DESCRIPTION = "Actuarial models in Python"
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
# with open(path.join(here, 'README.rst'), encoding='utf-8') as f:
# LONG_DESCRIPTION = f.read()
LONG_DESCRIPTION = """
**lifelib** is a collection of open-source life actuarial models written in Python.
lifelib includes a variety of models, with sample scripts
and Jupyter notebooks that demonstrate how to use the models.
Visit https://lifelib.io for more information!
What for?
---------
lifelib models are highly versatile and transparent.
You can customize lifelib models and utilize them
in various practical areas, such as:
- Model validation / testing
- Pricing / profit testing
- Research / educational projects
- Valuation / cashflow projections
- Asset-liability modeling
- Risk and capital modeling
- Actuarial modernization to replace spreadsheet models
Why lifelib?
------------
By effectively utilizing the models in lifelib,
you can expect the following benefits from both model development and governance perspectives:
- A more efficient, transparent, and faster model development experience
- Model integration with the Python ecosystem (Pandas, Numpy, SciPy, etc.)
- Elimination of spreadsheet errors
- Improved version control and model governance
- Automated model testing
Some of the models in lifelib are built using `modelx`_, an open-source
Python package for building object-oriented models in Python.
By using lifelib, you can enjoy the following advantages:
* Models run fast!
* Formulas are easy to read
* Easy to trace formula dependency and errors
* Formulas are instantly evaluated
* Pandas and Numpy can be utilized
* Object-oriented
* Input from Excel and CSV files
* Documents can be integrated
* Formulas are saved in text files
.. _modelx: http://docs.modelx.io
"""
def get_version(version_tuple):
# additional handling of a,b,rc tags, this can
# be simpler depending on your versioning scheme
if not isinstance(version_tuple[-1], int):
return '.'.join(
map(str, version_tuple[:-1])
) + version_tuple[-1]
return '.'.join(map(str, version_tuple))
# path to the packages __init__ module in project source tree
init = path.join(
path.dirname(__file__), 'lifelib', '__init__.py'
)
version_line = list(
filter(lambda l: l.startswith('VERSION'), open(init))
)[0]
# VERSION is a tuple so we need to eval its line of code.
# We could simply import it from the package but we
# cannot be sure that this package is importable before
# finishing its installation
VERSION = get_version(eval(version_line.split('=')[-1]))
def get_package_data(top_dirs: list):
result = []
extensions = ['py', 'ipynb', 'xlsx', 'csv', 'json', 'pickle']
modelfiles = ['_dynamic_inputs']
for topd in top_dirs:
for root, dirs, files in os.walk(topd):
for f in files:
l = f.split(".")
if len(l) > 1 and l[-1] in extensions:
# https://stackoverflow.com/questions/3167154/how-to-split-a-dos-path-into-its-components-in-python
# exclude such *.ipynb in .ipynb_checkpoints/
dir_comps = path.normpath(root).split(os.sep)
if not any(dname[0] == "." for dname in dir_comps if dname):
result.append(path.join(root, f))
elif len(l) == 1 and f in modelfiles:
result.append(path.join(root, f))
return result
setup(
name=DISTNAME,
version=VERSION,
description=DESCRIPTION,
long_description=LONG_DESCRIPTION,
url=URL,
author=AUTHOR,
author_email=EMAIL,
license=LICENSE,
# See https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
# Indicate who your project is intended for
'Intended Audience :: Financial and Insurance Industry',
'Intended Audience :: Science/Research',
'Topic :: Office/Business :: Financial',
'Topic :: Office/Business :: Financial :: Accounting',
'Topic :: Office/Business :: Financial :: Investment',
'Topic :: Office/Business :: Financial :: Spreadsheet',
'Topic :: Scientific/Engineering :: Mathematics',
# Pick your license as you wish (should match "license" above)
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Programming Language :: Python :: 3.11',
'Programming Language :: Python :: 3.12'
],
# What does your project relate to?
keywords='actuary model development',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages().
packages=find_packages(exclude=['contrib', 'doc']),
# Alternatively, if you want to distribute just a my_module.py, uncomment
# this:
# py_modules=["my_module"],
# List run-time dependencies here. These will be installed by pip when
# your project is installed. For an analysis of "install_requires" vs pip's
# requirements files see:
# https://packaging.python.org/en/latest/requirements.html
install_requires=['modelx>=0.24.0'],
# If your project only runs on certain Python versions,
# setting the python_requires argument to the appropriate PEP 440 version
# specifier string will prevent pip from installing the project on
# other Python versions.
# For example, if your package is for Python 3+ only, write:
python_requires='>=3.7',
# List additional groups of dependencies here (e.g. development
# dependencies). You can install these using the following syntax,
# for example:
# $ pip install -e .[dev,tests]
# extras_require={
# 'dev': ['check-manifest'],
# 'tests': ['coverage'],
# },
# If there are data files included in your packages that need to be
# installed, specify them here. If using Python 2.6 or less, then these
# have to be included in MANIFEST.in as well.
package_data={
'lifelib': get_package_data([
path.join(here, 'lifelib', 'libraries'),
path.join(here, 'lifelib', 'projects')
]),
},
# Although 'package_data' is the preferred approach, in some case you may
# need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
# data_files=[('my_data', ['data/data_file'])],
# To provide executable scripts, use entry points in preference to the
# "scripts" keyword. Entry points provide cross-platform support and allow
# pip to create the appropriate form of executable for the target platform.
entry_points={
'console_scripts': [
'lifelib-create = lifelib.commands.create:main',
],
},
)