forked from arduino/ArduinoCore-samd
-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathSERCOM.cpp
880 lines (728 loc) · 23.7 KB
/
SERCOM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/*
Copyright (c) 2014 Arduino. All right reserved.
SAMD51 support added by Adafruit - Copyright (c) 2018 Dean Miller for Adafruit Industries
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SERCOM.h"
#include "variant.h"
#include "Arduino.h"
#ifndef WIRE_RISE_TIME_NANOSECONDS
// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
// you can override this value in your variant if needed
#define WIRE_RISE_TIME_NANOSECONDS 125
#endif
SERCOM::SERCOM(Sercom* s)
{
sercom = s;
#if defined(__SAMD51__)
// A briefly-available but now deprecated feature had the SPI clock source
// set via a compile-time setting (MAX_SPI)...problem was this affected
// ALL SERCOMs, whereas some (anything read/write, e.g. SD cards) should
// not exceed the standard 24 MHz setting. Newer code, if it needs faster
// write-only SPI (e.g. to screen), should override the SERCOM clock on a
// per-peripheral basis. Nonetheless, we check SERCOM_SPI_FREQ_REF here
// (MAX_SPI * 2) to retain compatibility with any interim projects that
// might have relied on the compile-time setting. But please, don't.
#if SERCOM_SPI_FREQ_REF == F_CPU // F_CPU clock = GCLK0
clockSource = SERCOM_CLOCK_SOURCE_FCPU;
#elif SERCOM_SPI_FREQ_REF == 48000000 // 48 MHz clock = GCLK1 (standard)
clockSource = SERCOM_CLOCK_SOURCE_48M;
#elif SERCOM_SPI_FREQ_REF == 100000000 // 100 MHz clock = GCLK2
clockSource = SERCOM_CLOCK_SOURCE_100M;
#endif
#endif // end __SAMD51__
}
/* =========================
* ===== Sercom UART
* =========================
*/
void SERCOM::initUART(SercomUartMode mode, SercomUartSampleRate sampleRate, uint32_t baudrate)
{
initClockNVIC();
resetUART();
//Setting the CTRLA register
sercom->USART.CTRLA.reg = SERCOM_USART_CTRLA_MODE(mode) |
SERCOM_USART_CTRLA_SAMPR(sampleRate);
//Setting the Interrupt register
sercom->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC | //Received complete
SERCOM_USART_INTENSET_ERROR; //All others errors
if ( mode == UART_INT_CLOCK )
{
uint16_t sampleRateValue;
if (sampleRate == SAMPLE_RATE_x16) {
sampleRateValue = 16;
} else {
sampleRateValue = 8;
}
// Asynchronous fractional mode (Table 24-2 in datasheet)
// BAUD = fref / (sampleRateValue * fbaud)
// (multiply by 8, to calculate fractional piece)
#if defined(__SAMD51__)
uint32_t baudTimes8 = (SERCOM_FREQ_REF * 8) / (sampleRateValue * baudrate);
#else
uint32_t baudTimes8 = (SystemCoreClock * 8) / (sampleRateValue * baudrate);
#endif
sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
}
}
void SERCOM::initFrame(SercomUartCharSize charSize, SercomDataOrder dataOrder, SercomParityMode parityMode, SercomNumberStopBit nbStopBits)
{
//Setting the CTRLA register
sercom->USART.CTRLA.reg |=
SERCOM_USART_CTRLA_FORM((parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
//Setting the CTRLB register
sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_CHSIZE(charSize) |
nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
(parityMode == SERCOM_NO_PARITY ? 0 : parityMode) <<
SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
}
void SERCOM::initPads(SercomUartTXPad txPad, SercomRXPad rxPad)
{
//Setting the CTRLA register
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(txPad) |
SERCOM_USART_CTRLA_RXPO(rxPad);
// Enable Transceiver and Receiver
sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN ;
}
void SERCOM::resetUART()
{
// Start the Software Reset
sercom->USART.CTRLA.bit.SWRST = 1 ;
while ( sercom->USART.CTRLA.bit.SWRST || sercom->USART.SYNCBUSY.bit.SWRST )
{
// Wait for both bits Software Reset from CTRLA and SYNCBUSY coming back to 0
}
}
void SERCOM::enableUART()
{
//Setting the enable bit to 1
sercom->USART.CTRLA.bit.ENABLE = 0x1u;
//Wait for then enable bit from SYNCBUSY is equal to 0;
while(sercom->USART.SYNCBUSY.bit.ENABLE);
}
void SERCOM::flushUART()
{
// Skip checking transmission completion if data register is empty
if(isDataRegisterEmptyUART())
return;
// Wait for transmission to complete
while(!sercom->USART.INTFLAG.bit.TXC);
}
void SERCOM::clearStatusUART()
{
//Reset (with 0) the STATUS register
sercom->USART.STATUS.reg = SERCOM_USART_STATUS_RESETVALUE;
}
bool SERCOM::availableDataUART()
{
//RXC : Receive Complete
return sercom->USART.INTFLAG.bit.RXC;
}
bool SERCOM::isUARTError()
{
return sercom->USART.INTFLAG.bit.ERROR;
}
void SERCOM::acknowledgeUARTError()
{
sercom->USART.INTFLAG.bit.ERROR = 1;
}
bool SERCOM::isBufferOverflowErrorUART()
{
//BUFOVF : Buffer Overflow
return sercom->USART.STATUS.bit.BUFOVF;
}
bool SERCOM::isFrameErrorUART()
{
//FERR : Frame Error
return sercom->USART.STATUS.bit.FERR;
}
void SERCOM::clearFrameErrorUART()
{
// clear FERR bit writing 1 status bit
sercom->USART.STATUS.bit.FERR = 1;
}
bool SERCOM::isParityErrorUART()
{
//PERR : Parity Error
return sercom->USART.STATUS.bit.PERR;
}
bool SERCOM::isDataRegisterEmptyUART()
{
//DRE : Data Register Empty
return sercom->USART.INTFLAG.bit.DRE;
}
uint8_t SERCOM::readDataUART()
{
return sercom->USART.DATA.bit.DATA;
}
int SERCOM::writeDataUART(uint8_t data)
{
// Wait for data register to be empty
while(!isDataRegisterEmptyUART());
//Put data into DATA register
sercom->USART.DATA.reg = (uint16_t)data;
return 1;
}
void SERCOM::enableDataRegisterEmptyInterruptUART()
{
sercom->USART.INTENSET.reg = SERCOM_USART_INTENSET_DRE;
}
void SERCOM::disableDataRegisterEmptyInterruptUART()
{
sercom->USART.INTENCLR.reg = SERCOM_USART_INTENCLR_DRE;
}
/* =========================
* ===== Sercom SPI
* =========================
*/
void SERCOM::initSPI(SercomSpiTXPad mosi, SercomRXPad miso, SercomSpiCharSize charSize, SercomDataOrder dataOrder)
{
resetSPI();
initClockNVIC();
#if defined(__SAMD51__)
sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_MODE(0x3) | // master mode
SERCOM_SPI_CTRLA_DOPO(mosi) |
SERCOM_SPI_CTRLA_DIPO(miso) |
dataOrder << SERCOM_SPI_CTRLA_DORD_Pos;
#else
//Setting the CTRLA register
sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_MODE_SPI_MASTER |
SERCOM_SPI_CTRLA_DOPO(mosi) |
SERCOM_SPI_CTRLA_DIPO(miso) |
dataOrder << SERCOM_SPI_CTRLA_DORD_Pos;
#endif
//Setting the CTRLB register
sercom->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(charSize) |
SERCOM_SPI_CTRLB_RXEN; //Active the SPI receiver.
while( sercom->SPI.SYNCBUSY.bit.CTRLB == 1 );
}
void SERCOM::initSPIClock(SercomSpiClockMode clockMode, uint32_t baudrate)
{
//Extract data from clockMode
int cpha, cpol;
if((clockMode & (0x1ul)) == 0 )
cpha = 0;
else
cpha = 1;
if((clockMode & (0x2ul)) == 0)
cpol = 0;
else
cpol = 1;
//Setting the CTRLA register
sercom->SPI.CTRLA.reg |= ( cpha << SERCOM_SPI_CTRLA_CPHA_Pos ) |
( cpol << SERCOM_SPI_CTRLA_CPOL_Pos );
//Synchronous arithmetic
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous(baudrate);
}
void SERCOM::resetSPI()
{
//Setting the Software Reset bit to 1
sercom->SPI.CTRLA.bit.SWRST = 1;
//Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->SPI.CTRLA.bit.SWRST || sercom->SPI.SYNCBUSY.bit.SWRST);
}
void SERCOM::enableSPI()
{
//Setting the enable bit to 1
sercom->SPI.CTRLA.bit.ENABLE = 1;
while(sercom->SPI.SYNCBUSY.bit.ENABLE)
{
//Waiting then enable bit from SYNCBUSY is equal to 0;
}
}
void SERCOM::disableSPI()
{
while(sercom->SPI.SYNCBUSY.bit.ENABLE)
{
//Waiting then enable bit from SYNCBUSY is equal to 0;
}
//Setting the enable bit to 0
sercom->SPI.CTRLA.bit.ENABLE = 0;
}
void SERCOM::setDataOrderSPI(SercomDataOrder dataOrder)
{
//Register enable-protected
disableSPI();
sercom->SPI.CTRLA.bit.DORD = dataOrder;
enableSPI();
}
SercomDataOrder SERCOM::getDataOrderSPI()
{
return (sercom->SPI.CTRLA.bit.DORD ? LSB_FIRST : MSB_FIRST);
}
void SERCOM::setBaudrateSPI(uint8_t divider)
{
disableSPI(); // Register is enable-protected
#if defined(__SAMD51__)
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous(freqRef / divider);
#else
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous(SERCOM_SPI_FREQ_REF / divider);
#endif
enableSPI();
}
void SERCOM::setClockModeSPI(SercomSpiClockMode clockMode)
{
int cpha, cpol;
if((clockMode & (0x1ul)) == 0)
cpha = 0;
else
cpha = 1;
if((clockMode & (0x2ul)) == 0)
cpol = 0;
else
cpol = 1;
//Register enable-protected
disableSPI();
sercom->SPI.CTRLA.bit.CPOL = cpol;
sercom->SPI.CTRLA.bit.CPHA = cpha;
enableSPI();
}
uint8_t SERCOM::transferDataSPI(uint8_t data)
{
sercom->SPI.DATA.bit.DATA = data; // Writing data into Data register
while(sercom->SPI.INTFLAG.bit.RXC == 0); // Waiting Complete Reception
return sercom->SPI.DATA.bit.DATA; // Reading data
}
bool SERCOM::isBufferOverflowErrorSPI()
{
return sercom->SPI.STATUS.bit.BUFOVF;
}
bool SERCOM::isDataRegisterEmptySPI()
{
//DRE : Data Register Empty
return sercom->SPI.INTFLAG.bit.DRE;
}
//bool SERCOM::isTransmitCompleteSPI()
//{
// //TXC : Transmit complete
// return sercom->SPI.INTFLAG.bit.TXC;
//}
//
//bool SERCOM::isReceiveCompleteSPI()
//{
// //RXC : Receive complete
// return sercom->SPI.INTFLAG.bit.RXC;
//}
uint8_t SERCOM::calculateBaudrateSynchronous(uint32_t baudrate) {
#if defined(__SAMD51__)
uint16_t b = freqRef / (2 * baudrate);
#else
uint16_t b = SERCOM_SPI_FREQ_REF / (2 * baudrate);
#endif
if(b > 0) b--; // Don't -1 on baud calc if already at 0
return b;
}
/* =========================
* ===== Sercom WIRE
* =========================
*/
void SERCOM::resetWIRE()
{
//I2CM OR I2CS, no matter SWRST is the same bit.
//Setting the Software bit to 1
sercom->I2CM.CTRLA.bit.SWRST = 1;
//Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->I2CM.CTRLA.bit.SWRST || sercom->I2CM.SYNCBUSY.bit.SWRST);
}
void SERCOM::enableWIRE()
{
// I2C Master and Slave modes share the ENABLE bit function.
// Enable the I2C master mode
sercom->I2CM.CTRLA.bit.ENABLE = 1 ;
while ( sercom->I2CM.SYNCBUSY.bit.ENABLE != 0 )
{
// Waiting the enable bit from SYNCBUSY is equal to 0;
}
// Setting bus idle mode
sercom->I2CM.STATUS.bit.BUSSTATE = 1 ;
while ( sercom->I2CM.SYNCBUSY.bit.SYSOP != 0 )
{
// Wait the SYSOP bit from SYNCBUSY coming back to 0
}
}
void SERCOM::disableWIRE()
{
// I2C Master and Slave modes share the ENABLE bit function.
// Enable the I2C master mode
sercom->I2CM.CTRLA.bit.ENABLE = 0 ;
while ( sercom->I2CM.SYNCBUSY.bit.ENABLE != 0 )
{
// Waiting the enable bit from SYNCBUSY is equal to 0;
}
}
void SERCOM::initSlaveWIRE( uint8_t ucAddress, bool enableGeneralCall )
{
// Initialize the peripheral clock and interruption
initClockNVIC() ;
resetWIRE() ;
// Set slave mode
sercom->I2CS.CTRLA.bit.MODE = I2C_SLAVE_OPERATION;
sercom->I2CS.ADDR.reg = SERCOM_I2CS_ADDR_ADDR( ucAddress & 0x7Ful ) | // 0x7F, select only 7 bits
SERCOM_I2CS_ADDR_ADDRMASK( 0x00ul ); // 0x00, only match exact address
if (enableGeneralCall) {
sercom->I2CS.ADDR.reg |= SERCOM_I2CS_ADDR_GENCEN; // enable general call (address 0x00)
}
// Set the interrupt register
sercom->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | // Stop
SERCOM_I2CS_INTENSET_AMATCH | // Address Match
SERCOM_I2CS_INTENSET_DRDY ; // Data Ready
while ( sercom->I2CM.SYNCBUSY.bit.SYSOP != 0 )
{
// Wait the SYSOP bit from SYNCBUSY to come back to 0
}
}
void SERCOM::initMasterWIRE( uint32_t baudrate )
{
// Initialize the peripheral clock and interruption
initClockNVIC() ;
resetWIRE() ;
// Set master mode and enable SCL Clock Stretch mode (stretch after ACK bit)
sercom->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )/* |
SERCOM_I2CM_CTRLA_SCLSM*/ ;
// Enable Smart mode and Quick Command
//sercom->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN /*| SERCOM_I2CM_CTRLB_QCEN*/ ;
// Enable all interrupts
// sercom->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB | SERCOM_I2CM_INTENSET_ERROR ;
// Synchronous arithmetic baudrate
#if defined(__SAMD51__)
sercom->I2CM.BAUD.bit.BAUD = SERCOM_FREQ_REF / ( 2 * baudrate) - 1 ;
#else
sercom->I2CM.BAUD.bit.BAUD = SystemCoreClock / ( 2 * baudrate) - 5 - (((SystemCoreClock / 1000000) * WIRE_RISE_TIME_NANOSECONDS) / (2 * 1000));
#endif
}
void SERCOM::prepareNackBitWIRE( void )
{
if(isMasterWIRE()) {
// Send a NACK
sercom->I2CM.CTRLB.bit.ACKACT = 1;
} else {
sercom->I2CS.CTRLB.bit.ACKACT = 1;
}
}
void SERCOM::prepareAckBitWIRE( void )
{
if(isMasterWIRE()) {
// Send an ACK
sercom->I2CM.CTRLB.bit.ACKACT = 0;
} else {
sercom->I2CS.CTRLB.bit.ACKACT = 0;
}
}
void SERCOM::prepareCommandBitsWire(uint8_t cmd)
{
if(isMasterWIRE()) {
sercom->I2CM.CTRLB.bit.CMD = cmd;
while(sercom->I2CM.SYNCBUSY.bit.SYSOP)
{
// Waiting for synchronization
}
} else {
sercom->I2CS.CTRLB.bit.CMD = cmd;
}
}
bool SERCOM::startTransmissionWIRE(uint8_t address, SercomWireReadWriteFlag flag)
{
// 7-bits address + 1-bits R/W
address = (address << 0x1ul) | flag;
// If another master owns the bus or the last bus owner has not properly
// sent a stop, return failure early. This will prevent some misbehaved
// devices from deadlocking here at the cost of the caller being responsible
// for retrying the failed transmission. See SercomWireBusState for the
// possible bus states.
if(!isBusOwnerWIRE())
{
if( isBusBusyWIRE() || (isArbLostWIRE() && !isBusIdleWIRE()) || isBusUnknownWIRE() )
{
return false;
}
}
// Send start and address
sercom->I2CM.ADDR.bit.ADDR = address;
// Address Transmitted
if ( flag == WIRE_WRITE_FLAG ) // Write mode
{
while( !sercom->I2CM.INTFLAG.bit.MB ) {
// Wait transmission complete
// If certain errors occur, the MB bit may never be set (RFTM: SAMD21 sec:28.10.6; SAMD51 sec:36.10.7).
// The data transfer errors that can occur (including BUSERR) are all
// rolled up into INTFLAG.bit.ERROR from STATUS.reg
if (sercom->I2CM.INTFLAG.bit.ERROR) {
return false;
}
}
}
else // Read mode
{
while( !sercom->I2CM.INTFLAG.bit.SB ) {
// Wait transmission complete
// If the slave NACKS the address, the MB bit will be set.
// A variety of errors in the STATUS register can set the ERROR bit in the INTFLAG register
// In that case, send a stop condition and return false.
if (sercom->I2CM.INTFLAG.bit.MB || sercom->I2CM.INTFLAG.bit.ERROR) {
sercom->I2CM.CTRLB.bit.CMD = 3; // Stop condition
return false;
}
}
// Clean the 'Slave on Bus' flag, for further usage.
//sercom->I2CM.INTFLAG.bit.SB = 0x1ul;
}
//ACK received (0: ACK, 1: NACK)
if(sercom->I2CM.STATUS.bit.RXNACK)
{
return false;
}
else
{
return true;
}
}
bool SERCOM::sendDataMasterWIRE(uint8_t data)
{
//Send data
sercom->I2CM.DATA.bit.DATA = data;
//Wait transmission successful
while(!sercom->I2CM.INTFLAG.bit.MB) {
// If a data transfer error occurs, the MB bit may never be set.
// Check the error bit and bail if it's set.
// The data transfer errors that can occur (including BUSERR) are all
// rolled up into INTFLAG.bit.ERROR from STATUS.reg
if (sercom->I2CM.INTFLAG.bit.ERROR) {
return false;
}
}
//Problems on line? nack received?
if(sercom->I2CM.STATUS.bit.RXNACK)
return false;
else
return true;
}
bool SERCOM::sendDataSlaveWIRE(uint8_t data)
{
//Send data
sercom->I2CS.DATA.bit.DATA = data;
//Problems on line? nack received?
if(!sercom->I2CS.INTFLAG.bit.DRDY || sercom->I2CS.STATUS.bit.RXNACK)
return false;
else
return true;
}
bool SERCOM::isMasterWIRE( void )
{
return sercom->I2CS.CTRLA.bit.MODE == I2C_MASTER_OPERATION;
}
bool SERCOM::isSlaveWIRE( void )
{
return sercom->I2CS.CTRLA.bit.MODE == I2C_SLAVE_OPERATION;
}
bool SERCOM::isBusIdleWIRE( void )
{
return sercom->I2CM.STATUS.bit.BUSSTATE == WIRE_IDLE_STATE;
}
bool SERCOM::isBusOwnerWIRE( void )
{
return sercom->I2CM.STATUS.bit.BUSSTATE == WIRE_OWNER_STATE;
}
bool SERCOM::isBusUnknownWIRE( void )
{
return sercom->I2CM.STATUS.bit.BUSSTATE == WIRE_UNKNOWN_STATE;
}
bool SERCOM::isArbLostWIRE( void )
{
return sercom->I2CM.STATUS.bit.ARBLOST == 1;
}
bool SERCOM::isBusBusyWIRE( void )
{
return sercom->I2CM.STATUS.bit.BUSSTATE == WIRE_BUSY_STATE;
}
bool SERCOM::isDataReadyWIRE( void )
{
return sercom->I2CS.INTFLAG.bit.DRDY;
}
bool SERCOM::isStopDetectedWIRE( void )
{
return sercom->I2CS.INTFLAG.bit.PREC;
}
bool SERCOM::isRestartDetectedWIRE( void )
{
return sercom->I2CS.STATUS.bit.SR;
}
bool SERCOM::isAddressMatch( void )
{
return sercom->I2CS.INTFLAG.bit.AMATCH;
}
bool SERCOM::isMasterReadOperationWIRE( void )
{
return sercom->I2CS.STATUS.bit.DIR;
}
bool SERCOM::isRXNackReceivedWIRE( void )
{
return sercom->I2CM.STATUS.bit.RXNACK;
}
int SERCOM::availableWIRE( void )
{
if(isMasterWIRE())
return sercom->I2CM.INTFLAG.bit.SB;
else
return sercom->I2CS.INTFLAG.bit.DRDY;
}
uint8_t SERCOM::readDataWIRE( void )
{
if(isMasterWIRE())
{
while (sercom->I2CM.INTFLAG.bit.SB == 0) {
// Waiting complete receive
// A variety of errors in the STATUS register can set the ERROR bit in the INTFLAG register
// In that case, send a stop condition and return false.
// readDataWIRE should really be able to indicate an error (which would never be used
// because the readDataWIRE callers (in Wire.cpp) should have checked availableWIRE() first and timed it
// out if the data never showed up
if (sercom->I2CM.INTFLAG.bit.MB || sercom->I2CM.INTFLAG.bit.ERROR) {
sercom->I2CM.CTRLB.bit.CMD = 3; // Stop condition
return 0xFF;
}
}
return sercom->I2CM.DATA.bit.DATA ;
}
else
{
return sercom->I2CS.DATA.reg ;
}
}
#if defined(__SAMD51__)
static const struct {
Sercom *sercomPtr;
uint8_t id_core;
uint8_t id_slow;
IRQn_Type irq[4];
} sercomData[] = {
{ SERCOM0, SERCOM0_GCLK_ID_CORE, SERCOM0_GCLK_ID_SLOW,
SERCOM0_0_IRQn, SERCOM0_1_IRQn, SERCOM0_2_IRQn, SERCOM0_3_IRQn },
{ SERCOM1, SERCOM1_GCLK_ID_CORE, SERCOM1_GCLK_ID_SLOW,
SERCOM1_0_IRQn, SERCOM1_1_IRQn, SERCOM1_2_IRQn, SERCOM1_3_IRQn },
{ SERCOM2, SERCOM2_GCLK_ID_CORE, SERCOM2_GCLK_ID_SLOW,
SERCOM2_0_IRQn, SERCOM2_1_IRQn, SERCOM2_2_IRQn, SERCOM2_3_IRQn },
{ SERCOM3, SERCOM3_GCLK_ID_CORE, SERCOM3_GCLK_ID_SLOW,
SERCOM3_0_IRQn, SERCOM3_1_IRQn, SERCOM3_2_IRQn, SERCOM3_3_IRQn },
{ SERCOM4, SERCOM4_GCLK_ID_CORE, SERCOM4_GCLK_ID_SLOW,
SERCOM4_0_IRQn, SERCOM4_1_IRQn, SERCOM4_2_IRQn, SERCOM4_3_IRQn },
{ SERCOM5, SERCOM5_GCLK_ID_CORE, SERCOM5_GCLK_ID_SLOW,
SERCOM5_0_IRQn, SERCOM5_1_IRQn, SERCOM5_2_IRQn, SERCOM5_3_IRQn },
#if defined(SERCOM6)
{ SERCOM6, SERCOM6_GCLK_ID_CORE, SERCOM6_GCLK_ID_SLOW,
SERCOM6_0_IRQn, SERCOM6_1_IRQn, SERCOM6_2_IRQn, SERCOM6_3_IRQn },
#endif
#if defined(SERCOM7)
{ SERCOM7, SERCOM7_GCLK_ID_CORE, SERCOM7_GCLK_ID_SLOW,
SERCOM7_0_IRQn, SERCOM7_1_IRQn, SERCOM7_2_IRQn, SERCOM7_3_IRQn },
#endif
};
#else // end if SAMD51 (prob SAMD21)
static const struct {
Sercom *sercomPtr;
uint8_t clock;
IRQn_Type irqn;
} sercomData[] = {
SERCOM0, GCM_SERCOM0_CORE, SERCOM0_IRQn,
SERCOM1, GCM_SERCOM1_CORE, SERCOM1_IRQn,
SERCOM2, GCM_SERCOM2_CORE, SERCOM2_IRQn,
SERCOM3, GCM_SERCOM3_CORE, SERCOM3_IRQn,
#if defined(SERCOM4)
SERCOM4, GCM_SERCOM4_CORE, SERCOM4_IRQn,
#endif
#if defined(SERCOM5)
SERCOM5, GCM_SERCOM5_CORE, SERCOM5_IRQn,
#endif
};
#endif // end !SAMD51
int8_t SERCOM::getSercomIndex(void) {
for(uint8_t i=0; i<(sizeof(sercomData) / sizeof(sercomData[0])); i++) {
if(sercom == sercomData[i].sercomPtr) return i;
}
return -1;
}
#if defined(__SAMD51__)
// This is currently for overriding an SPI SERCOM's clock source only --
// NOT for UART or WIRE SERCOMs, where it will have unintended consequences.
// It does not check.
// SERCOM clock source override is available only on SAMD51 (not 21).
// A dummy function for SAMD21 (compiles to nothing) is present in SERCOM.h
// so user code doesn't require a lot of conditional situations.
void SERCOM::setClockSource(int8_t idx, SercomClockSource src, bool core) {
if(src == SERCOM_CLOCK_SOURCE_NO_CHANGE) return;
uint8_t clk_id = core ? sercomData[idx].id_core : sercomData[idx].id_slow;
GCLK->PCHCTRL[clk_id].bit.CHEN = 0; // Disable timer
while(GCLK->PCHCTRL[clk_id].bit.CHEN); // Wait for disable
if(core) clockSource = src; // Save SercomClockSource value
// From cores/arduino/startup.c:
// GCLK0 = F_CPU
// GCLK1 = 48 MHz
// GCLK2 = 100 MHz
// GCLK3 = XOSC32K
// GCLK4 = 12 MHz
if(src == SERCOM_CLOCK_SOURCE_FCPU) {
GCLK->PCHCTRL[clk_id].reg =
GCLK_PCHCTRL_GEN_GCLK0_Val | (1 << GCLK_PCHCTRL_CHEN_Pos);
if(core) freqRef = F_CPU; // Save clock frequency value
} else if(src == SERCOM_CLOCK_SOURCE_48M) {
GCLK->PCHCTRL[clk_id].reg =
GCLK_PCHCTRL_GEN_GCLK1_Val | (1 << GCLK_PCHCTRL_CHEN_Pos);
if(core) freqRef = 48000000;
} else if(src == SERCOM_CLOCK_SOURCE_100M) {
GCLK->PCHCTRL[clk_id].reg =
GCLK_PCHCTRL_GEN_GCLK2_Val | (1 << GCLK_PCHCTRL_CHEN_Pos);
if(core) freqRef = 100000000;
} else if(src == SERCOM_CLOCK_SOURCE_32K) {
GCLK->PCHCTRL[clk_id].reg =
GCLK_PCHCTRL_GEN_GCLK3_Val | (1 << GCLK_PCHCTRL_CHEN_Pos);
if(core) freqRef = 32768;
} else if(src == SERCOM_CLOCK_SOURCE_12M) {
GCLK->PCHCTRL[clk_id].reg =
GCLK_PCHCTRL_GEN_GCLK4_Val | (1 << GCLK_PCHCTRL_CHEN_Pos);
if(core) freqRef = 12000000;
}
while(!GCLK->PCHCTRL[clk_id].bit.CHEN); // Wait for clock enable
}
#endif
void SERCOM::initClockNVIC( void )
{
int8_t idx = getSercomIndex();
if(idx < 0) return; // We got a problem here
#if defined(__SAMD51__)
for(uint8_t i=0; i<4; i++) {
NVIC_ClearPendingIRQ(sercomData[idx].irq[i]);
NVIC_SetPriority(sercomData[idx].irq[i], SERCOM_NVIC_PRIORITY);
NVIC_EnableIRQ(sercomData[idx].irq[i]);
}
// SPI DMA speed is dictated by the "slow clock" (I think...maybe) so
// BOTH are set to the same clock source (clk_slow isn't sourced from
// XOSC32K as in prior versions of SAMD core).
// This might have power implications for sleep code.
setClockSource(idx, clockSource, true); // true = core clock
setClockSource(idx, clockSource, false); // false = slow clock
#else // end if SAMD51 (prob SAMD21)
uint8_t clockId = sercomData[idx].clock;
IRQn_Type IdNvic = sercomData[idx].irqn;
// Setting NVIC
NVIC_ClearPendingIRQ(IdNvic);
NVIC_SetPriority(IdNvic, SERCOM_NVIC_PRIORITY);
NVIC_EnableIRQ(IdNvic);
// Setting clock
GCLK->CLKCTRL.reg =
GCLK_CLKCTRL_ID( clockId ) | // Generic Clock 0 (SERCOMx)
GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source
GCLK_CLKCTRL_CLKEN;
while(GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY); // Wait for synchronization
#endif // end !SAMD51
}