-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathautoencoder.py
41 lines (37 loc) · 1.97 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow_core.python.keras import Input
def get_autoencoder_model(img_width=64, img_height=64):
autoencoder = Sequential()
# Encoder
autoencoder.add(Input(shape=(img_width, img_height, 1)))
autoencoder.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
autoencoder.add(MaxPooling2D((2, 2), padding='same'))
autoencoder.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
autoencoder.add(MaxPooling2D((2, 2), padding='same'))
# Decoder
autoencoder.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
autoencoder.add(UpSampling2D((2, 2)))
autoencoder.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
autoencoder.add(UpSampling2D((2, 2)))
autoencoder.add(Conv2D(1, (3, 3), activation='sigmoid', padding='same'))
autoencoder.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
autoencoder.summary()
return autoencoder
def get_autoencoder_model128(img_width=128, img_height=128): # Built for 128x128
autoencoder = Sequential()
autoencoder.add(Input(shape=(img_width, img_height, 1)))
autoencoder.add(Conv2D(64, (5, 5), activation='relu', padding='same'))
autoencoder.add(MaxPooling2D((2, 2), padding='same'))
autoencoder.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
autoencoder.add(MaxPooling2D((2, 2), padding='same'))
# Decoder
autoencoder.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
autoencoder.add(UpSampling2D((2, 2)))
autoencoder.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
autoencoder.add(UpSampling2D((2, 2)))
autoencoder.add(Conv2D(1, (5, 5), activation='sigmoid', padding='same'))
autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
autoencoder.summary()
return autoencoder