-
Notifications
You must be signed in to change notification settings - Fork 8
/
run_gpt.py
759 lines (647 loc) · 33.9 KB
/
run_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import os
import argparse
import json
import logging
import math
import os
import random
from pathlib import Path
import datasets
import evaluate
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import copy
import transformers
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
LlamaForCausalLM, LlamaTokenizer
)
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry
from transformers.utils.versions import require_version
from peft import (
get_peft_config,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
LoraConfig,
PeftType,
PrefixTuningConfig,
PromptEncoderConfig,
)
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--task_name",
type=str,
default='winogrande_s',
help="The name of the glue task to train on.",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=400,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
default='meta-llama/Llama-2-7b-hf',
help="Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=.5,
help="Gradient clipping norm.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=10000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default='./outputs', help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default='1000',
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--ignore_mismatched_sizes",
action="store_true",
default=True,
help="Whether or not to enable to load a pretrained model whose head dimensions are different.",
)
parser.add_argument(
"--save_train_results",
action="store_true",
default=False,
help="Whether or not to save evaluation on training set.",
)
parser.add_argument("--lora_r", type=int, default=8)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--lora_dropout", type=float, default=0.1)
parser.add_argument("--testing_set", type=str, default='val')
parser.add_argument("--lm_head", action="store_true", default=False)
args = parser.parse_args()
print(args)
peft_method = 'lora'
if args.lm_head:
peft_method = 'lora_lmhead'
if args.testing_set != 'val':
peft_method += args.testing_set
args.output_dir += f'/{args.task_name}/{args.model_name_or_path}_{peft_method}_{args.lora_alpha}_{args.lora_dropout}_{args.learning_rate}_{args.seed}'
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_glue_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator = (
Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator()
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.task_name is not None:
# Downloading and loading a dataset from the hub.
if args.task_name in ['wnli', 'rte', 'mrpc', 'cola', 'sst2', 'qnli', 'qqp', 'mnli']:
raw_datasets = load_dataset("glue", args.task_name)
elif args.task_name in ['cb', 'wic', 'boolq']:
raw_datasets = load_dataset("super_glue", args.task_name)
elif 'ARC' in args.task_name:
raw_datasets = load_dataset('ai2_arc', args.task_name)
elif 'winogrande' in args.task_name:
raw_datasets = load_dataset('winogrande', args.task_name)
else:
raw_datasets = load_dataset(args.task_name)
else:
# Loading the dataset from local csv or json file.
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = (args.train_file if args.train_file is not None else args.validation_file).split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
if 'ARC' in args.task_name or 'openbookqa' in args.task_name:
# Initialize counters
count_3_choices_train = 0
count_5_choices_train = 0
count_3_choices_valid = 0
count_5_choices_valid = 0
# Count in the training dataset
for example in raw_datasets["train"]:
if len(example['choices']['label']) == 3:
count_3_choices_train += 1
elif len(example['choices']['label']) == 5:
count_5_choices_train += 1
# Count in the validation dataset
for example in raw_datasets["validation"]:
if len(example['choices']['label']) == 3:
count_3_choices_valid += 1
elif len(example['choices']['label']) == 5:
count_5_choices_valid += 1
# Get total counts
total_train = len(raw_datasets["train"])
total_valid = len(raw_datasets["validation"])
# Print counts
print('====counts train====')
print(f"Total number of training examples: {total_train}")
print(f"Number of training questions with 3 choices: {count_3_choices_train}")
print(f"Number of training questions with 5 choices: {count_5_choices_train}")
print('====counts valid====')
print(f"Total number of validation examples: {total_valid}")
print(f"Number of validation questions with 3 choices: {count_3_choices_valid}")
print(f"Number of validation questions with 5 choices: {count_5_choices_valid}")
# Filter the examples in the training dataset
filtered_train = raw_datasets["train"].filter(lambda example: len(example['choices']['label']) == 4)
# Filter the examples in the validation dataset
filtered_valid = raw_datasets["validation"].filter(lambda example: len(example['choices']['label']) == 4)
# Filter the examples in the test dataset
filtered_test = raw_datasets["test"].filter(lambda example: len(example['choices']['label']) == 4)
# Replace the original datasets with the filtered datasets
raw_datasets["train"] = filtered_train
raw_datasets["validation"] = filtered_valid
raw_datasets["test"] = filtered_test
print('====counts train====')
print(f"Total number of training examples: {len(raw_datasets['train'])}")
print('====counts valid====')
print(f"Total number of validation examples: {len(raw_datasets['validation'])}")
def convert_choices_to_alpha(example):
# Define a mapping from numerical to alphabetical labels
mapping = {'1': 'A', '2': 'B', '3': 'C', '4': 'D'}
# Convert the 'label' field in 'choices'
example['choices']['label'] = [mapping.get(label, label) for label in example['choices']['label']]
# Convert the 'answerKey' field
example['answerKey'] = mapping.get(example['answerKey'], example['answerKey'])
example['choices']['text'] = [text if text.endswith('.') else text + '.' for text in example['choices']['text']]
example['choices']['text'] = [text[0].upper() + text[1:] if text else text for text in example['choices']['text']]
return example
# Apply the conversion to the training, validation, and test datasets
raw_datasets["train"] = raw_datasets["train"].map(convert_choices_to_alpha)
raw_datasets["validation"] = raw_datasets["validation"].map(convert_choices_to_alpha)
raw_datasets["test"] = raw_datasets["test"].map(convert_choices_to_alpha)
print('====train data====')
from collections import Counter
# Initialize counters for training and validation datasets
counter_train = Counter()
counter_valid = Counter()
# Count in the training dataset
for example in raw_datasets["train"]:
counter_train.update(example['answerKey'])
# Count in the validation dataset
for example in raw_datasets["validation"]:
counter_valid.update(example['answerKey'])
# Print the results
print("Training dataset counts:")
for choice, count in counter_train.items():
print(f"Choice {choice}: {count} occurrences")
print("Validation dataset counts:")
for choice, count in counter_valid.items():
print(f"Choice {choice}: {count} occurrences")
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer, padding_side='left', use_auth_token='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')
tokenizer.pad_token = tokenizer.bos_token
if args.task_name in ['boolq']: #,'winogrande_m', 'winogrande_s']:
tokenizer.add_eos_token = True
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, load_in_8bit=True
)
target_modules=['v_proj','q_proj']
if args.lm_head:
target_modules.append('lm_head')
peft_config = LoraConfig(task_type="CAUSAL_LM", inference_mode=False, r=8, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, target_modules=target_modules)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
print(model)
padding = "max_length" if args.pad_to_max_length else False
def preprocess_function(examples):
if args.task_name == 'boolq':
texts = [f"Answer the question with only True or False: {question} Context: {passage}" for passage, question in zip(examples['passage'], examples['question'])]
result = tokenizer(texts, padding=padding, max_length=args.max_length, truncation=True)
result["labels"] = examples["label"]
elif 'openbookqa' in args.task_name:
choices_list = [' '.join(f'{label}. {text}' for label, text in zip(choices['label'], choices['text'])) for choices in examples['choices']]
texts = [f"Select one of the choices that answers the following question: {question} Choices: {choices} Answer:" for question, choices in zip(examples['question_stem'], choices_list)]
result = tokenizer(texts, padding=padding, max_length=args.max_length, truncation=True)
map_dict = {"A": 0, "B": 1, "C": 2, "D": 3, "1": 0, "2": 1, "3": 2, "4": 3}
result["labels"] = [map_dict[label] for label in examples["answerKey"]]
elif 'ARC' in args.task_name:
choices_list = [' '.join(f'{label}. {text}' for label, text in zip(choices['label'], choices['text'])) for choices in examples['choices']]
texts = [f"Select one of the choices that answers the following question: {question} Choices: {choices} Answer:" for question, choices in zip(examples['question'], choices_list)]
result = tokenizer(texts, padding=padding, max_length=args.max_length, truncation=True)
map_dict = {"A": 0, "B": 1, "C": 2, "D": 3, "1": 0, "2": 1, "3": 2, "4": 3}
result["labels"] = [map_dict[label] for label in examples["answerKey"]]
elif 'winogrande' in args.task_name:
texts = [f"Select one of the choices that answers the following question: {question} Choices: A. {option1}. B {option2}. Answer:" for question, option1, option2 in zip(examples['sentence'], examples['option1'], examples['option2'])]
result = tokenizer(texts, padding=padding, max_length=args.max_length, truncation=True)
map_dict = {"1": 0, "2": 1, "":None}
result["labels"] = [map_dict[label] for label in examples["answer"]]
return result
with accelerator.main_process_first():
processed_datasets = raw_datasets.map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
# print('====train data====')
train_dataset = processed_datasets["train"]
# print('====validation data====')
processed_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
if args.testing_set == 'test':
ds = processed_dataset.train_test_split(test_size=0.5, seed=42, shuffle=False)
val_dataset, eval_dataset = ds["train"], ds["test"]
elif args.testing_set == 'train_val':
ds = train_dataset.train_test_split(test_size=0.2, seed=42, shuffle=False)
train_dataset, val_dataset = ds["train"], ds["test"]
eval_dataset = processed_dataset
elif args.testing_set == 'val':
eval_dataset = processed_dataset
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
if args.testing_set != 'val':
val_dataloader = DataLoader(val_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# Prepare everything with our `accelerator`.
class WrappedModel(torch.nn.Module):
def __init__(self, model):
super().__init__()
if args.task_name == 'boolq':
self.id_list = [tokenizer.encode('False')[1], tokenizer.encode('True')[1]]
elif args.task_name == 'openbookqa':
self.id_list = [tokenizer.encode('A')[1], tokenizer.encode('B')[1], tokenizer.encode('C')[1], tokenizer.encode('D')[1]]
elif 'ARC' in args.task_name:
self.id_list = [tokenizer.encode('A')[1], tokenizer.encode('B')[1], tokenizer.encode('C')[1], tokenizer.encode('D')[1]]
elif 'winogrande' in args.task_name:
self.id_list = [tokenizer.encode('A')[1], tokenizer.encode('B')[1]]
self.model = model
def forward(self, **kwargs):
kwargs.pop('labels', None)
output_dict = self.model(**kwargs)
logits = output_dict['logits']
selected_logits = logits[:, -1, self.id_list]
output_dict['logits'] = selected_logits
return output_dict
model = WrappedModel(model)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if p.requires_grad and not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if p.requires_grad and any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("glue_no_trainer", experiment_config)
# Get the metric function
if args.task_name is not None:
if args.task_name in ['wnli', 'rte', 'mrpc', 'cola', 'sst2', 'qnli', 'qqp', 'mnli']:
metric = evaluate.load("glue", args.task_name, experiment_id=f"{args.output_dir}")
elif args.task_name in ['cb', 'wic', 'boolq']:
metric = evaluate.load("super_glue", args.task_name, experiment_id=f"{args.output_dir}")
else:
metric = evaluate.load('accuracy', experiment_id=f"{args.output_dir}")
else:
metric = evaluate.load("accuracy")
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_step
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
test_loader_list = [eval_dataloader]
test_loader_names = ['eval']
if args.testing_set != 'val':
test_loader_list.append(val_dataloader)
test_loader_names.append('val')
for epoch in range(starting_epoch, args.num_train_epochs):
active_dataloader = train_dataloader
for step, train_batch in enumerate(active_dataloader):
if isinstance(checkpointing_steps, int):
for test_loader, test_loader_name in zip(test_loader_list, test_loader_names):
if (completed_steps+1) % checkpointing_steps == 0 or completed_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
# accelerator.save_state(output_dir)
model.eval()
samples_seen = 0
output_dicts = []
for step, batch in tqdm(enumerate(test_loader)):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) #if not is_regression else outputs.logits.squeeze()
logits = outputs.logits.detach()
for j in range(logits.size(0)):
probs = logits[j] #F.softmax(logits[j], -1)
label = batch["labels"]
output_dict = {
'index': args.per_device_eval_batch_size * step + j,
'true': label[j].item(),
'pred': logits[j].argmax().item(),
'conf': probs.max().item(),
'logits': logits[j].cpu().numpy().tolist(),
'probs': probs.cpu().numpy().tolist(),
}
output_dicts.append(output_dict)
predictions, references = accelerator.gather((predictions, batch["labels"]))
# If we are in a multiprocess environment, the last batch has duplicates
if accelerator.num_processes > 1:
if step == len(eval_dataloader) - 1:
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
references = references[: len(eval_dataloader.dataset) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
if test_loader_name == 'eval':
accelerator.wait_for_everyone()
# unwrapped_model = accelerator.unwrap_model(model).model
accelerator.unwrap_model(model).model.save_pretrained(
output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(output_dir)
all_results = {f"eval_{k}": v for k, v in eval_metric.items()}
if test_loader_name == 'val':
all_results_output_path = os.path.join(output_dir, f"all_results_val.json")
else:
all_results_output_path = os.path.join(output_dir, f"all_results.json")
if os.path.isfile(all_results_output_path):
os.remove(all_results_output_path)
with open(all_results_output_path, "w") as f:
json.dump(all_results, f)
if test_loader_name == 'val':
output_path = os.path.join(output_dir, f'eval_res_val.json')
else:
output_path = os.path.join(output_dir, f'eval_res.json')
print(f'writing outputs to \'{output_path}\'')
if os.path.isfile(output_path):
os.remove(output_path)
with open(output_path, 'w+') as f:
for i, output_dict in enumerate(output_dicts):
output_dict_str = json.dumps(output_dict)
f.write(f'{output_dict_str}\n')
del output_dicts, all_results, output_dict, eval_metric, logits, probs, label, predictions, references, outputs
if completed_steps > args.max_train_steps:
break
model.train()
outputs = model(**train_batch)
y = train_batch['labels']
loss = torch.nn.CrossEntropyLoss()(outputs.logits, y)
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().cpu().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
del outputs, loss, y
if __name__ == "__main__":
main()