-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval.py
161 lines (145 loc) · 5.42 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import math
from pathlib import Path
import torch
import yaml
from accelerate.utils import set_seed
from ema_pytorch import EMA
from torch.utils.data import Subset
from torchvision.utils import save_image
from utils import (
DeviceAwareDataLoader,
TrainConfig,
evaluate_model_and_log,
get_date_str,
has_int_squareroot,
log,
make_cifar,
print_model_summary,
sample_batched,
)
from vdm import VDM
from vdm_unet import UNetVDM
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--seed", type=int, default=12345)
parser.add_argument("--results-path", type=str, required=True)
parser.add_argument("--num-workers", type=int, default=1)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--n-sample-steps", type=int, default=250)
parser.add_argument("--clip-samples", type=bool, default=True)
parser.add_argument("--n-samples-for-eval", type=int, default=1)
args = parser.parse_args()
set_seed(args.seed)
# Load config from YAML.
with open(Path(args.results_path) / "config.yaml", "r") as f:
cfg = TrainConfig(**yaml.safe_load(f))
model = UNetVDM(cfg)
print_model_summary(model, batch_size=None, shape=(3, 32, 32))
train_set = make_cifar(train=True, download=True)
validation_set = make_cifar(train=False, download=False)
diffusion = VDM(model, cfg, image_shape=train_set[0][0].shape)
Evaluator(
diffusion,
train_set,
validation_set,
config=cfg,
eval_batch_size=args.batch_size,
results_path=Path(args.results_path),
num_dataloader_workers=args.num_workers,
device=args.device,
n_sample_steps=args.n_sample_steps,
clip_samples=args.clip_samples,
n_samples_for_eval=args.n_samples_for_eval,
).eval()
class Evaluator:
def __init__(
self,
diffusion_model,
train_set,
validation_set,
config,
*,
eval_batch_size,
device,
results_path,
num_samples=64,
num_dataloader_workers=1,
n_sample_steps=250,
clip_samples=True,
n_samples_for_eval=4,
):
assert has_int_squareroot(num_samples), "num_samples must have an integer sqrt"
self.num_samples = num_samples
self.cfg = config
self.n_sample_steps = n_sample_steps
self.clip_samples = clip_samples
self.device = device
self.eval_batch_size = eval_batch_size
self.n_samples_for_eval = n_samples_for_eval
def make_dataloader(dataset, limit_size=None):
# If limit_size is not None, only use a subset of the dataset
if limit_size is not None:
dataset = Subset(dataset, range(limit_size))
return DeviceAwareDataLoader(
dataset,
eval_batch_size,
device=device,
shuffle=False,
pin_memory=True,
num_workers=num_dataloader_workers,
drop_last=True,
)
self.validation_dataloader = make_dataloader(validation_set)
self.train_eval_dataloader = make_dataloader(train_set, len(validation_set))
self.diffusion_model = diffusion_model.eval().to(self.device)
# No need to set EMA parameters since we only use it for eval from checkpoint.
self.ema = EMA(self.diffusion_model).to(self.device)
self.ema.ema_model.eval()
self.path = results_path
self.eval_path = self.path / f"eval_{get_date_str()}"
self.eval_path.mkdir()
self.checkpoint_file = self.path / f"model.pt"
with open(self.eval_path / "eval_config.yaml", "w") as f:
eval_conf = {
"n_sample_steps": n_sample_steps,
"clip_samples": clip_samples,
"n_samples_for_eval": n_samples_for_eval,
}
yaml.dump(eval_conf, f)
self.load_checkpoint()
def load_checkpoint(self):
data = torch.load(self.checkpoint_file, map_location=self.device)
log(f"Loading checkpoint '{self.checkpoint_file}'")
self.diffusion_model.load_state_dict(data["model"])
self.ema.load_state_dict(data["ema"])
@torch.no_grad()
def eval(self):
self.eval_model(self.diffusion_model, is_ema=False)
self.eval_model(self.ema.ema_model, is_ema=True)
def eval_model(self, model, *, is_ema):
log(f"\n *** Evaluating {'EMA' if is_ema else 'online'} model\n")
self.sample_images(model, is_ema=is_ema)
for validation in [True, False]:
evaluate_model_and_log(
model,
self.validation_dataloader
if validation
else self.train_eval_dataloader,
self.eval_path / ("ema-metrics.jsonl" if is_ema else "metrics.jsonl"),
"validation" if validation else "train",
n=self.n_samples_for_eval,
)
def sample_images(self, model, *, is_ema):
samples = sample_batched(
model,
self.num_samples,
self.eval_batch_size,
self.n_sample_steps,
self.clip_samples,
)
path = self.eval_path / f"sample{'-ema' if is_ema else ''}.png"
save_image(samples, str(path), nrow=int(math.sqrt(self.num_samples)))
if __name__ == "__main__":
main()