forked from lindawangg/COVID-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
167 lines (136 loc) · 5.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import tensorflow as tf
from tensorflow import keras
import numpy as np
import os
import cv2
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.utils import shuffle
class BalanceDataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self,
dataset,
is_training=True,
batch_size=8,
input_shape=(224,224),
n_classes=3,
num_channels=3,
mapping={'normal': 0, 'pneumonia': 1, 'COVID-19': 2},
shuffle=True,
augmentation=True,
datadir='data',
class_weights=[1., 1., 25.]
):
'Initialization'
self.datadir = datadir
self.dataset = dataset
self.is_training = is_training
self.batch_size = batch_size
self.N = len(self.dataset)
self.input_shape = input_shape
self.n_classes = n_classes
self.num_channels = num_channels
self.mapping = mapping
self.shuffle = True
self.n = 0
self.class_weights = class_weights
if augmentation:
self.augmentation = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
brightness_range=(0.9, 1.1),
fill_mode='constant',
cval=0.,
)
datasets = {'normal': [], 'pneumonia': [], 'COVID-19': []}
for l in dataset:
datasets[l.split()[-1]].append(l)
self.datasets = [
datasets['normal'] + datasets['pneumonia'],
datasets['COVID-19'],
]
print(len(self.datasets[0]), len(self.datasets[1]))
self.on_epoch_end()
def __next__(self):
# Get one batch of data
batch_x, batch_y, weights = self.__getitem__(self.n)
# Batch index
self.n += 1
# If we have processed the entire dataset then
if self.n >= self.__len__():
self.on_epoch_end
self.n = 0
return batch_x, batch_y, weights
def __len__(self):
return int(np.ceil(len(self.datasets[0]) / float(self.batch_size)))
def on_epoch_end(self):
'Updates indexes after each epoch'
if self.shuffle == True:
for v in self.datasets:
np.random.shuffle(v)
def __getitem__(self, idx):
batch_x, batch_y = np.zeros((self.batch_size, *self.input_shape, self.num_channels)), np.zeros(self.batch_size)
batch_files = self.datasets[0][idx*self.batch_size : (idx+1)*self.batch_size]
batch_files[np.random.randint(self.batch_size)] = np.random.choice(self.datasets[1])
for i in range(self.batch_size):
sample = batch_files[i].split()
if self.is_training:
folder = 'train'
else:
folder = 'test'
x = cv2.imread(os.path.join(self.datadir, folder, sample[1]))
x = cv2.resize(x, self.input_shape)
if self.is_training and hasattr(self, 'augmentation'):
x = self.augmentation.random_transform(x)
x = x.astype('float32') / 255.0
y = self.mapping[sample[2]]
batch_x[i] = x
batch_y[i] = y
weights = np.take(self.class_weights, batch_y.astype('int64'))
return batch_x, keras.utils.to_categorical(batch_y, num_classes=self.n_classes), weights
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self,
dataset,
is_training=True,
batch_size=8,
input_shape=(224,224),
n_classes=3,
num_channels=3,
mapping={'normal': 0, 'pneumonia': 1, 'COVID-19': 2},
shuffle=True):
'Initialization'
self.dataset = dataset
self.is_training = is_training
self.batch_size = batch_size
self.N = len(self.dataset)
self.input_shape = input_shape
self.n_classes = n_classes
self.num_channels = num_channels
self.mapping = mapping
self.shuffle = True
self.on_epoch_end()
def __len__(self):
return int(np.ceil(self.N / float(self.batch_size)))
def on_epoch_end(self):
self.dataset = shuffle(self.dataset, random_state=0)
def __getitem__(self, idx):
batch_x, batch_y = np.zeros((self.batch_size, *self.input_shape, self.num_channels)), np.zeros(self.batch_size)
for i in range(self.batch_size):
index = min((idx * self.batch_size) + i, self.N-1)
sample = self.dataset[index].split()
if self.is_training:
folder = 'train'
else:
folder = 'test'
x = cv2.imread(os.path.join('data', folder, sample[1]))
x = cv2.resize(x, self.input_shape)
x = x.astype('float32') / 255.0
#y = int(sample[1])
y = self.mapping[sample[2]]
batch_x[i] = x
batch_y[i] = y
return batch_x, keras.utils.to_categorical(batch_y, num_classes=self.n_classes)