forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
noise_inject.py
24 lines (20 loc) · 1.07 KB
/
noise_inject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import argparse
import torch
from scipy.io.wavfile import write
from data.data_loader import load_audio, NoiseInjection
parser = argparse.ArgumentParser()
parser.add_argument('--input-path', default='input.wav', help='The input audio to inject noise into')
parser.add_argument('--noise-path', default='noise.wav', help='The noise file to mix in')
parser.add_argument('--output-path', default='output.wav', help='The noise file to mix in')
parser.add_argument('--sample-rate', default=16000, help='Sample rate to save output as')
parser.add_argument('--noise-level', type=float, default=1.0,
help='The Signal to Noise ratio (higher means more noise)')
args = parser.parse_args()
noise_injector = NoiseInjection()
data = load_audio(args.input_path)
mixed_data = noise_injector.inject_noise_sample(data, args.noise_path, args.noise_level)
mixed_data = torch.tensor(mixed_data, dtype=torch.float).unsqueeze(1) # Add channels dim
write(filename=args.output_path,
data=mixed_data.numpy(),
rate=args.sample_rate)
print('Saved mixed file to %s' % args.output_path)