-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanny.cpp
1320 lines (1095 loc) · 41.7 KB
/
canny.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "systemc.h"
#define VERBOSE 1
#define NOEDGE 255
#define POSSIBLE_EDGE 128
#define EDGE 0
#define BOOSTBLURFACTOR 90.0
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define SIGMA 0.6
#define TLOW 0.3
#define THIGH 0.8
#define COLS 3840
#define ROWS 2160
#define SIZE COLS*ROWS
#define VIDEONAME "Keck"
#define IMG_IN "video/" VIDEONAME "%03d.pgm"
#define IMG_OUT VIDEONAME "%03d_edges.pgm"
#define IMG_NUM 30 /* number of images processed (1 or more) */
#define AVAIL_IMG 30 /* number of different image frames (1 or more) */
/* upper bound for the size of the gaussian kernel
* SIGMA must be less than 4.0
* check for 'windowsize' below
*/
#define WINSIZE 21
/***************************************************
* IMAGE DEFINITION *
**************************************************/
typedef struct Image_s
{
unsigned char img[SIZE];
Image_s(void)
{
for (int i=0; i<SIZE; i++)
{
img[i] = 0;
}
}
Image_s& operator=(const Image_s& copy)
{
for (int i=0; i<SIZE; i++)
{
img[i] = copy.img[i];
}
return *this;
}
operator unsigned char*()
{
return img;
}
unsigned char& operator[](const int index)
{
return img[index];
}
} IMAGE;
typedef struct SImage_s {
short int img[SIZE];
SImage_s(void) {
for (int i = 0; i < SIZE; i++) {
img[i] = 0;
}
}
SImage_s& operator=(const SImage_s& copy) {
for (int i = 0; i < SIZE; i++) {
img[i] = copy.img[i];
}
return *this;
}
operator short int*() {
return img;
}
short int& operator[](const int index) {
return img[index];
}
} SIMAGE;
/***************************************************
* STIMULUS MODULE *
**************************************************/
SC_MODULE(Stimulus)
{
// PX_I/O: PORT X=MODULENAME INPUT/OUTPUT
sc_fifo_out<IMAGE> PS_O;
IMAGE image;
/******************************************************************************
* Function: read_pgm_image
* Purpose: This function reads in an image in PGM format. The image can be
* read in from either a file or from standard input. The image is only read
* from standard input when infilename = NULL. Because the PGM format includes
* the number of columns and the number of rows in the image, these are read
* from the file. Memory to store the image is allocated OUTSIDE this function.
* The found image size is checked against the expected rows and cols.
* All comments in the header are discarded in the process of reading the
* image. Upon failure, this function returns 0, upon sucess it returns 1.
******************************************************************************/
int read_pgm_image(const char *infilename, unsigned char *image, int rows, int cols)
{
FILE *fp;
char buf[71];
int r, c;
/***************************************************************************
* Open the input image file for reading if a filename was given. If no
* filename was provided, set fp to read from standard input.
***************************************************************************/
if(infilename == NULL) fp = stdin;
else{
if((fp = fopen(infilename, "r")) == NULL){
fprintf(stderr, "Error reading the file %s in read_pgm_image().\n",
infilename);
return(0);
}
}
/***************************************************************************
* Verify that the image is in PGM format, read in the number of columns
* and rows in the image and scan past all of the header information.
***************************************************************************/
fgets(buf, 70, fp);
if(strncmp(buf,"P5",2) != 0){
fprintf(stderr, "The file %s is not in PGM format in ", infilename);
fprintf(stderr, "read_pgm_image().\n");
if(fp != stdin) fclose(fp);
return(0);
}
do{ fgets(buf, 70, fp); }while(buf[0] == '#'); /* skip all comment lines */
sscanf(buf, "%d %d", &c, &r);
if(c != cols || r != rows){
fprintf(stderr, "The file %s is not a %d by %d image in ", infilename, cols, rows);
fprintf(stderr, "read_pgm_image().\n");
if(fp != stdin) fclose(fp);
return(0);
}
do{ fgets(buf, 70, fp); }while(buf[0] == '#'); /* skip all comment lines */
/***************************************************************************
* Read the image from the file.
***************************************************************************/
if((unsigned)rows != fread(image, cols, rows, fp)){
fprintf(stderr, "Error reading the image data in read_pgm_image().\n");
if(fp != stdin) fclose(fp);
return(0);
}
if(fp != stdin) fclose(fp);
return(1);
}
void stimulus(void)
{
cout << "IN STIM THREAD!" << endl;
char infilename[70];
int i=0, n=0;
// for loop for write
for (int i = 0; i < IMG_NUM; i++)
{
/* code */
n = i % AVAIL_IMG;
sprintf(infilename, IMG_IN, n+1);
/****************************************************************************
* Read in the image. This read function allocates memory for the image.
****************************************************************************/
if(VERBOSE) printf("Reading the image %s.\n", infilename);
if(read_pgm_image(infilename, image, ROWS, COLS) == 0){
fprintf(stderr, "Error reading the input image, %s.\n", infilename);
exit(1);
}
else
PS_O.write(image);
}
}
// Stimulus Constructor
SC_CTOR(Stimulus):
PS_O("PS_O") // Only initialize ports here
{
SC_THREAD(stimulus);
set_stack_size(128*1024*1024);
};
};
/***************************************************
* DIN MODULE *
**************************************************/
SC_MODULE(DIN)
{
// PX_I/O: PORT X=MODULENAME INPUT/OUTPUT
sc_fifo_in<IMAGE> PDI_I;
sc_fifo_out<IMAGE> PDI_O;
IMAGE image;
void dIN()
{
cout << "STARTED DIN THREAD!" << endl;
while(1){
PDI_O.write(PDI_I.read());
}
}
SC_CTOR(DIN):
PDI_I("PDI_I"),
PDI_O("PDI_O")
{
SC_THREAD(dIN);
set_stack_size(128*1024*1024);
};
}; // END OF DIN MODULE
/***************************************************
* GAUSSIANSMOOTH (GS) MODULE *
**************************************************/
SC_MODULE(GS) {
IMAGE image;
SIMAGE smoothedim;
sc_fifo_in<IMAGE> img;
sc_fifo_out<SIMAGE> smtP;
/*******************************************************************************
* PROCEDURE: gaussian_smooth
* PURPOSE: Blur an image with a gaussian filter.
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void gaussian_smooth(unsigned char *image, int rows, int cols, float sigma,
short int *smoothedim)
{
int r, c, rr, cc, /* Counter variables. */
windowsize, /* Dimension of the gaussian kernel. */
center; /* Half of the windowsize. */
float tempim[SIZE] /* Buffer for separable filter gaussian smoothing. */
= {0.0},
kernel[WINSIZE] /* A one dimensional gaussian kernel. */
= {0.0},
dot, /* Dot product summing variable. */
sum; /* Sum of the kernel weights variable. */
/****************************************************************************
* Create a 1-dimensional gaussian smoothing kernel.
****************************************************************************/
if(VERBOSE) printf(" Computing the gaussian smoothing kernel.\n");
make_gaussian_kernel(sigma, kernel, &windowsize);
center = windowsize / 2;
/****************************************************************************
* Blur in the x - direction.
****************************************************************************/
if(VERBOSE) printf(" Bluring the image in the X-direction.\n");
for(r=0;r<rows;r++){
for(c=0;c<cols;c++){
dot = 0.0;
sum = 0.0;
for(cc=(-center);cc<=center;cc++){
if(((c+cc) >= 0) && ((c+cc) < cols)){
dot += (float)image[r*cols+(c+cc)] * kernel[center+cc];
sum += kernel[center+cc];
}
}
tempim[r*cols+c] = dot/sum;
}
}
/****************************************************************************
* Blur in the y - direction.
****************************************************************************/
if(VERBOSE) printf(" Bluring the image in the Y-direction.\n");
for(c=0;c<cols;c++){
for(r=0;r<rows;r++){
sum = 0.0;
dot = 0.0;
for(rr=(-center);rr<=center;rr++){
if(((r+rr) >= 0) && ((r+rr) < rows)){
dot += tempim[(r+rr)*cols+c] * kernel[center+rr];
sum += kernel[center+rr];
}
}
smoothedim[r*cols+c] = (short int)(dot*BOOSTBLURFACTOR/sum + 0.5);
}
}
}
/*******************************************************************************
* PROCEDURE: make_gaussian_kernel
* PURPOSE: Create a one dimensional gaussian kernel.
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void make_gaussian_kernel(float sigma, float *kernel, int *windowsize)
{
int i, center;
float x, fx, sum=0.0;
*windowsize = 1 + 2 * ceil(2.5 * sigma);
center = (*windowsize) / 2;
if(VERBOSE) printf(" The kernel has %d elements.\n", *windowsize);
for(i=0;i<(*windowsize);i++){
x = (float)(i - center);
fx = pow(2.71828, -0.5*x*x/(sigma*sigma)) / (sigma * sqrt(6.2831853));
kernel[i] = fx;
sum += fx;
}
for(i=0;i<(*windowsize);i++) kernel[i] /= sum;
if(VERBOSE){
printf("The filter coefficients are:\n");
for(i=0;i<(*windowsize);i++)
printf("kernel[%d] = %f\n", i, kernel[i]);
}
}
void GaussianSmooth(void) {
while (1) {
img.read(image);
gaussian_smooth(image, ROWS, COLS, SIGMA,smoothedim);
smtP.write(smoothedim);
}
}
SC_CTOR(GS) {
SC_THREAD(GaussianSmooth);
set_stack_size(128*1024*1024);
}
};
/***************************************************
* DERRIVATIVE MODULE *
**************************************************/
SC_MODULE(DERRIVE) {
SIMAGE imageIn;
SIMAGE imageX;
SIMAGE imageY;
sc_fifo_in<SIMAGE> smoothing; // SIMAGE
sc_fifo_out<SIMAGE> dx1;
sc_fifo_out<SIMAGE> dy1;
sc_fifo_out<SIMAGE> dx2;
sc_fifo_out<SIMAGE> dy2;
/*******************************************************************************
* PROCEDURE: derrivative_x_y
* PURPOSE: Compute the first derivative of the image in both the x any y
* directions. The differential filters that are used are:
*
* -1
* dx = -1 0 +1 and dy = 0
* +1
*
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void derrivative_x_y(short int *smoothedim, int rows, int cols,
short int *delta_x, short int *delta_y)
{
int r, c, pos;
/****************************************************************************
* Compute the x-derivative. Adjust the derivative at the borders to avoid
* losing pixels.
****************************************************************************/
if(VERBOSE) printf(" Computing the X-direction derivative.\n");
for(r=0;r<rows;r++){
pos = r * cols;
delta_x[pos] = smoothedim[pos+1] - smoothedim[pos];
pos++;
for(c=1;c<(cols-1);c++,pos++){
delta_x[pos] = smoothedim[pos+1] - smoothedim[pos-1];
}
delta_x[pos] = smoothedim[pos] - smoothedim[pos-1];
}
/****************************************************************************
* Compute the y-derivative. Adjust the derivative at the borders to avoid
* losing pixels.
****************************************************************************/
if(VERBOSE) printf(" Computing the Y-direction derivative.\n");
for(c=0;c<cols;c++){
pos = c;
delta_y[pos] = smoothedim[pos+cols] - smoothedim[pos];
pos += cols;
for(r=1;r<(rows-1);r++,pos+=cols){
delta_y[pos] = smoothedim[pos+cols] - smoothedim[pos-cols];
}
delta_y[pos] = smoothedim[pos] - smoothedim[pos-cols];
}
}
void Derrive(void) {
// cout << "****** In DERRIVATIVE_X_Y **********" << endl;
while (1) {
smoothing.read(imageIn);
derrivative_x_y(imageIn, ROWS, COLS, imageX, imageY);
dx1.write(imageX);
dy1.write(imageY);
dx2.write(imageX);
dy2.write(imageY);
}
}
SC_CTOR(DERRIVE) {
SC_THREAD(Derrive);
set_stack_size(128*1024*1024);
}
};
/***************************************************
* MAGNITUDE (MAG) MODULE *
**************************************************/
SC_MODULE(MAG) {
sc_fifo_in<SIMAGE> dx;
sc_fifo_in<SIMAGE> dy;
sc_fifo_out<SIMAGE> mag1;
sc_fifo_out<SIMAGE> mag2;
SIMAGE imageX;
SIMAGE imageY;
SIMAGE imageMag;
/*******************************************************************************
* PROCEDURE: magnitude_x_y
* PURPOSE: Compute the magnitude of the gradient. This is the square root of
* the sum of the squared derivative values.
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void magnitude_x_y(short int *delta_x, short int *delta_y, int rows, int cols,
short int *magnitude)
{
int r, c, pos, sq1, sq2;
for(r=0,pos=0;r<rows;r++){
for(c=0;c<cols;c++,pos++){
sq1 = (int)delta_x[pos] * (int)delta_x[pos];
sq2 = (int)delta_y[pos] * (int)delta_y[pos];
magnitude[pos] = (short)(0.5 + sqrt((float)sq1 + (float)sq2));
}
}
}
void Magnitude(void) {
while (1) {
dy.read(imageY);
dx.read(imageX);
magnitude_x_y(imageX, imageY, ROWS, COLS, imageMag);
mag1.write(imageMag);
mag2.write(imageMag);
}
}
SC_CTOR(MAG){
SC_THREAD(Magnitude);
set_stack_size(128*1024*1024);
}
};
/***************************************************
* NON MAX SUPPLY (NMS) MODULE *
**************************************************/
SC_MODULE(NMS) {
sc_fifo_in<SIMAGE> mag;
sc_fifo_in<SIMAGE> dx;
sc_fifo_in<SIMAGE> dy;
sc_fifo_out<IMAGE> nms;
SIMAGE imageX;
SIMAGE imageY;
SIMAGE imageMag;
IMAGE imageNMS;
/*******************************************************************************
* PROCEDURE: non_max_supp
* PURPOSE: This routine applies non-maximal suppression to the magnitude of
* the gradient image.
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void non_max_supp(short *mag, short *gradx, short *grady, int nrows, int ncols,
unsigned char *result)
{
int rowcount, colcount,count;
short *magrowptr,*magptr;
short *gxrowptr,*gxptr;
short *gyrowptr,*gyptr,z1,z2;
short m00; short gx=0; short gy=0;
float mag1,mag2; float xperp=0;float yperp=0;
unsigned char *resultrowptr, *resultptr;
/****************************************************************************
* Zero the edges of the result image.
****************************************************************************/
for(count=0,resultrowptr=result,resultptr=result+ncols*(nrows-1);
count<ncols; resultptr++,resultrowptr++,count++){
*resultrowptr = *resultptr = (unsigned char) 0;
}
for(count=0,resultptr=result,resultrowptr=result+ncols-1;
count<nrows; count++,resultptr+=ncols,resultrowptr+=ncols){
*resultptr = *resultrowptr = (unsigned char) 0;
}
/****************************************************************************
* Suppress non-maximum points.
****************************************************************************/
for(rowcount=1,magrowptr=mag+ncols+1,gxrowptr=gradx+ncols+1,
gyrowptr=grady+ncols+1,resultrowptr=result+ncols+1;
rowcount<=nrows-2; // bug fix 3/29/17, RD
rowcount++,magrowptr+=ncols,gyrowptr+=ncols,gxrowptr+=ncols,
resultrowptr+=ncols){
for(colcount=1,magptr=magrowptr,gxptr=gxrowptr,gyptr=gyrowptr,
resultptr=resultrowptr;colcount<=ncols-2; // bug fix 3/29/17, RD
colcount++,magptr++,gxptr++,gyptr++,resultptr++){
m00 = *magptr;
if(m00 == 0){
*resultptr = (unsigned char) NOEDGE;
}
else{
xperp = -(gx = *gxptr)/((float)m00);
yperp = (gy = *gyptr)/((float)m00);
}
if(gx >= 0){
if(gy >= 0){
if (gx >= gy)
{
/* 111 */
/* Left point */
z1 = *(magptr - 1);
z2 = *(magptr - ncols - 1);
mag1 = (m00 - z1)*xperp + (z2 - z1)*yperp;
/* Right point */
z1 = *(magptr + 1);
z2 = *(magptr + ncols + 1);
mag2 = (m00 - z1)*xperp + (z2 - z1)*yperp;
}
else
{
/* 110 */
/* Left point */
z1 = *(magptr - ncols);
z2 = *(magptr - ncols - 1);
mag1 = (z1 - z2)*xperp + (z1 - m00)*yperp;
/* Right point */
z1 = *(magptr + ncols);
z2 = *(magptr + ncols + 1);
mag2 = (z1 - z2)*xperp + (z1 - m00)*yperp;
}
}
else
{
if (gx >= -gy)
{
/* 101 */
/* Left point */
z1 = *(magptr - 1);
z2 = *(magptr + ncols - 1);
mag1 = (m00 - z1)*xperp + (z1 - z2)*yperp;
/* Right point */
z1 = *(magptr + 1);
z2 = *(magptr - ncols + 1);
mag2 = (m00 - z1)*xperp + (z1 - z2)*yperp;
}
else
{
/* 100 */
/* Left point */
z1 = *(magptr + ncols);
z2 = *(magptr + ncols - 1);
mag1 = (z1 - z2)*xperp + (m00 - z1)*yperp;
/* Right point */
z1 = *(magptr - ncols);
z2 = *(magptr - ncols + 1);
mag2 = (z1 - z2)*xperp + (m00 - z1)*yperp;
}
}
}
else
{
if ((gy = *gyptr) >= 0)
{
if (-gx >= gy)
{
/* 011 */
/* Left point */
z1 = *(magptr + 1);
z2 = *(magptr - ncols + 1);
mag1 = (z1 - m00)*xperp + (z2 - z1)*yperp;
/* Right point */
z1 = *(magptr - 1);
z2 = *(magptr + ncols - 1);
mag2 = (z1 - m00)*xperp + (z2 - z1)*yperp;
}
else
{
/* 010 */
/* Left point */
z1 = *(magptr - ncols);
z2 = *(magptr - ncols + 1);
mag1 = (z2 - z1)*xperp + (z1 - m00)*yperp;
/* Right point */
z1 = *(magptr + ncols);
z2 = *(magptr + ncols - 1);
mag2 = (z2 - z1)*xperp + (z1 - m00)*yperp;
}
}
else
{
if (-gx > -gy)
{
/* 001 */
/* Left point */
z1 = *(magptr + 1);
z2 = *(magptr + ncols + 1);
mag1 = (z1 - m00)*xperp + (z1 - z2)*yperp;
/* Right point */
z1 = *(magptr - 1);
z2 = *(magptr - ncols - 1);
mag2 = (z1 - m00)*xperp + (z1 - z2)*yperp;
}
else
{
/* 000 */
/* Left point */
z1 = *(magptr + ncols);
z2 = *(magptr + ncols + 1);
mag1 = (z2 - z1)*xperp + (m00 - z1)*yperp;
/* Right point */
z1 = *(magptr - ncols);
z2 = *(magptr - ncols - 1);
mag2 = (z2 - z1)*xperp + (m00 - z1)*yperp;
}
}
}
/* Now determine if the current point is a maximum point */
if ((mag1 > 0.0) || (mag2 > 0.0))
{
*resultptr = (unsigned char) NOEDGE;
}
else
{
if (mag2 == 0.0)
*resultptr = (unsigned char) NOEDGE;
else
*resultptr = (unsigned char) POSSIBLE_EDGE;
}
}
}
}
void NonMaxSupply(void) {
while(1) {
mag.read(imageMag);
dy.read(imageY);
dx.read(imageX);
non_max_supp(imageMag, imageX, imageY, ROWS, COLS, imageNMS);
nms.write(imageNMS);
}
}
SC_CTOR(NMS){
SC_THREAD(NonMaxSupply);
set_stack_size(128*1024*1024);
}
};
/***************************************************
* APPLY HYSTERESIS (AH) MODULE *
**************************************************/
SC_MODULE(AH) {
sc_fifo_in<SIMAGE> mag;
sc_fifo_in<IMAGE> nms;
sc_fifo_out<IMAGE> edgeP;
SIMAGE imageMAG;
IMAGE imageNMS;
IMAGE edge;
/*******************************************************************************
* PROCEDURE: follow_edges
* PURPOSE: This procedure edges is a recursive routine that traces edgs along
* all paths whose magnitude values remain above some specifyable lower
* threshhold.
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void follow_edges(unsigned char *edgemapptr, short *edgemagptr, short lowval,
int cols)
{
short *tempmagptr;
unsigned char *tempmapptr;
int i;
int x[8] = {1,1,0,-1,-1,-1,0,1},
y[8] = {0,1,1,1,0,-1,-1,-1};
for(i=0;i<8;i++){
tempmapptr = edgemapptr - y[i]*cols + x[i];
tempmagptr = edgemagptr - y[i]*cols + x[i];
if((*tempmapptr == POSSIBLE_EDGE) && (*tempmagptr > lowval)){
*tempmapptr = (unsigned char) EDGE;
follow_edges(tempmapptr,tempmagptr, lowval, cols);
}
}
}
/*******************************************************************************
* PROCEDURE: apply_hysteresis
* PURPOSE: This routine finds edges that are above some high threshhold or
* are connected to a high pixel by a path of pixels greater than a low
* threshold.
* NAME: Mike Heath
* DATE: 2/15/96
*******************************************************************************/
void apply_hysteresis(short int *mag, unsigned char *nms, int rows, int cols,
float tlow, float thigh, unsigned char *edge)
{
int r, c, pos, numedges, highcount, lowthreshold, highthreshold, hist[32768];
short int maximum_mag=0;
/****************************************************************************
* Initialize the edge map to possible edges everywhere the non-maximal
* suppression suggested there could be an edge except for the border. At
* the border we say there can not be an edge because it makes the
* follow_edges algorithm more efficient to not worry about tracking an
* edge off the side of the image.
****************************************************************************/
for(r=0,pos=0;r<rows;r++){
for(c=0;c<cols;c++,pos++){
if(nms[pos] == POSSIBLE_EDGE) edge[pos] = POSSIBLE_EDGE;
else edge[pos] = NOEDGE;
}
}
for(r=0,pos=0;r<rows;r++,pos+=cols){
edge[pos] = NOEDGE;
edge[pos+cols-1] = NOEDGE;
}
pos = (rows-1) * cols;
for(c=0;c<cols;c++,pos++){
edge[c] = NOEDGE;
edge[pos] = NOEDGE;
}
/****************************************************************************
* Compute the histogram of the magnitude image. Then use the histogram to
* compute hysteresis thresholds.
****************************************************************************/
for(r=0;r<32768;r++) hist[r] = 0;
for(r=0,pos=0;r<rows;r++){
for(c=0;c<cols;c++,pos++){
if(edge[pos] == POSSIBLE_EDGE) hist[mag[pos]]++;
}
}
/****************************************************************************
* Compute the number of pixels that passed the nonmaximal suppression.
****************************************************************************/
for(r=1,numedges=0;r<32768;r++){
if(hist[r] != 0) maximum_mag = r;
numedges += hist[r];
}
highcount = (int)(numedges * thigh + 0.5);
/****************************************************************************
* Compute the high threshold value as the (100 * thigh) percentage point
* in the magnitude of the gradient histogram of all the pixels that passes
* non-maximal suppression. Then calculate the low threshold as a fraction
* of the computed high threshold value. John Canny said in his paper
* "A Computational Approach to Edge Detection" that "The ratio of the
* high to low threshold in the implementation is in the range two or three
* to one." That means that in terms of this implementation, we should
* choose tlow ~= 0.5 or 0.33333.
****************************************************************************/
r = 1;
numedges = hist[1];
while((r<(maximum_mag-1)) && (numedges < highcount)){
r++;
numedges += hist[r];
}
highthreshold = r;
lowthreshold = (int)(highthreshold * tlow + 0.5);
if(VERBOSE){
printf("The input low and high fractions of %f and %f computed to\n",
tlow, thigh);
printf("magnitude of the gradient threshold values of: %d %d\n",
lowthreshold, highthreshold);
}
/****************************************************************************
* This loop looks for pixels above the highthreshold to locate edges and
* then calls follow_edges to continue the edge.
****************************************************************************/
for(r=0,pos=0;r<rows;r++){
for(c=0;c<cols;c++,pos++){
if((edge[pos] == POSSIBLE_EDGE) && (mag[pos] >= highthreshold)){
edge[pos] = EDGE;
follow_edges((edge+pos), (mag+pos), lowthreshold, cols);
}
}
}
/****************************************************************************
* Set all the remaining possible edges to non-edges.
****************************************************************************/
for(r=0,pos=0;r<rows;r++){
for(c=0;c<cols;c++,pos++) if(edge[pos] != EDGE) edge[pos] = NOEDGE;
}
}
void ApplyHystersis(void) {
while (1) {
mag.read(imageMAG);
nms.read(imageNMS);
apply_hysteresis(imageMAG, imageNMS, ROWS, COLS, TLOW, THIGH, edge);
edgeP.write(edge);
}
}
SC_CTOR(AH) {
SC_THREAD(ApplyHystersis);
set_stack_size(128*1024*1024);
}
};
/***************************************************
* CANNY MODULE *
**************************************************/
SC_MODULE(Canny) // DUT
{
// PX_I/O: PORT X=MODULENAME INPUT/OUTPUT
sc_fifo_in<IMAGE> PC_I;
sc_fifo_out<IMAGE> PC_O;
// CHANNELS
sc_fifo<SIMAGE> q1;
sc_fifo<SIMAGE> q2;
sc_fifo<SIMAGE> q3;
sc_fifo<SIMAGE> q4;
sc_fifo<SIMAGE> q5;
sc_fifo<SIMAGE> q6;
sc_fifo<SIMAGE> q7;
sc_fifo<IMAGE> q8;
IMAGE image;
IMAGE edge;
// MODULES
GS gsM;
DERRIVE derrivM;
MAG magM;
NMS nmsM;
AH ahM;
void before_end_of_elaboration() {
gsM.img.bind(PC_I);
gsM.smtP.bind(q1);
derrivM.smoothing.bind(q1);
derrivM.dx1.bind(q2);
derrivM.dy1.bind(q3);
derrivM.dx2.bind(q4);
derrivM.dy2.bind(q5);
magM.dx.bind(q2);
magM.dy.bind(q3);
magM.mag1.bind(q6);
magM.mag2.bind(q7);
nmsM.mag.bind(q6);
nmsM.dx.bind(q4);
nmsM.dy.bind(q5);
nmsM.nms.bind(q8);
ahM.mag.bind(q7);
ahM.nms.bind(q8);
ahM.edgeP.bind(PC_O);
}
void DUT_CANNY()
{
cout << "STARTED Canny THREAD!" << endl;
/****************************************************************************
* Perform the edge detection. All of the work takes place here.
****************************************************************************/
while(1){
image = PC_I.read();
if(VERBOSE){
printf("Starting Canny edge detection.\n");
// canny(image, ROWS, COLS, SIGMA, TLOW, THIGH, edge);
PC_O.write(image);
PC_O.write(edge);
}