forked from kvfrans/magna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·146 lines (122 loc) · 5.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import tensorflow as tf
import numpy as np
from ops import *
from utils import *
from glob import glob
import os
import scipy.misc
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import queue
class Inpaint():
def __init__(self):
self.num_colors = 3
self.batch_size = 64
self.images = tf.placeholder(tf.float32, [None, None, None, self.num_colors])
self.classes = tf.placeholder(tf.float32, [None, None, None, 1])
# breaking down the context
h0 = lrelu(conv2d(self.images, self.num_colors, 64, name='dg_h0_conv')) #/2
h1 = lrelu(conv2d(h0, 64, 64, name='dg_h1_conv')) #/4
h2 = lrelu(conv2d(h1, 64, 64, name='dg_h2_conv')) #/8
h3 = lrelu(conv2d(h2, 64, 128, name='dg_h3_conv')) #/16
h4 = tf.sigmoid(conv2d(h3, 128, 1, name='dg_h4_conv')) #/32
generated = h4
self.generated = generated
self.loss = -tf.reduce_sum(self.classes * tf.log(1e-8 + generated) + (1-self.classes) * tf.log(1e-8 + 1 - generated),axis=[1,2,3])
self.optim = tf.train.AdamOptimizer(0.0002, beta1=0.5).minimize(self.loss)
self.sess = tf.Session()
self.sess.run(tf.initialize_all_variables())
self.saver = tf.train.Saver(max_to_keep=10)
def train(self):
data = sorted(glob(os.path.join("./imgs", "*.jpg")))
data_real = sorted(glob(os.path.join("./imgs-classes", "*.jpg")))
for e in range(50):
for j in range((len(data) // self.batch_size) - 1):
i = j + 0
batch_files = data[i*self.batch_size:(i+1)*self.batch_size]
batch = [get_image(batch_file) for batch_file in batch_files]
batch_images = np.array(batch).astype(np.float32)
class_files = data_real[i*self.batch_size:(i+1)*self.batch_size]
classes = [get_image_class(cfile) for cfile in class_files]
class_images = np.array(classes).astype(np.float32)
loss, gen, _ = self.sess.run([self.loss, self.generated, self.optim], feed_dict={self.images: batch_images, self.classes: class_images})
print("%d %d, %f" % (e, i, np.mean(loss)))
if i % 30 == 0:
self.saver.save(self.sess, os.getcwd()+"/training/train",global_step=e*1000000 + i)
def load(self):
self.saver.restore(self.sess, tf.train.latest_checkpoint(os.getcwd()+"/training/"))
def test(self):
for path in ["temp2.png"]:
# for path in sorted(glob(os.path.join("./imgs", "*.jpg")))[:10]:
im = np.expand_dims(get_image_fit(path), 0)
open_cv_image = np.array(im[0])
gen = self.sess.run([self.generated], feed_dict={self.images: im})[0]
gen = gen[0,:,:,0]
scipy.misc.imsave("temp.jpg", gen)
img = cv2.imread('temp.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
zones = np.zeros_like(img)
groupnum = 1
boxes = []
v = []
for x in range(gen.shape[0]):
for y in range(gen.shape[1]):
v.append((gray[x,y], x, y))
v.sort(key=lambda x: x[0])
v = v[::-1]
for g, x, y in v:
# print("%d %d %d" % (x, y, gray[x, y]))
if gray[x,y] >= 150:
q = queue.Queue()
q.put((x,y, int(gray[x,y]), -1, -1))
minx = -1
miny = -1
maxx = -1
maxy = -1
# 200 -> 180, 50
# 100 -> 150 X
# oldval -> newval
while not q.empty():
ix, iy, oldval, oldx, oldy = q.get()
change = oldval - int(gray[ix, iy])
# print("%d %d" % (oldval, int(gray[ix, iy])))
# print("%d %d %d %d %d" % (ix, iy, change, oldx, oldy))
if gray[ix, iy] >= 45 and change > -30:
placeval = int(gray[ix, iy])
gray[ix, iy] = 0
zones[ix, iy] = groupnum * 20
if ix > 0:
q.put((ix-1, iy, placeval, ix, iy))
if ix < gen.shape[0] - 1:
q.put((ix+1, iy, placeval, ix, iy))
if iy > 0:
q.put((ix, iy-1, placeval, ix, iy))
if iy < gen.shape[1] - 1:
q.put((ix, iy+1, placeval, ix, iy))
if minx == -1 or ix < minx:
minx = ix
if miny == -1 or iy < miny:
miny = iy
if maxx == -1 or ix > maxx:
maxx = ix
if maxy == -1 or iy > maxy:
maxy = iy
# print("%d %d %d %d" % (minx, miny, maxx, maxy))
# print("%d %d %d %d" % (minx*32, miny*32, maxx*32, maxy*32))
cv2.rectangle(open_cv_image,(miny*32,minx*32),(maxy*32 + 32,maxx*32 + 32),(0,1,0),2)
boxes.append((miny*32, minx*32, maxy*32 + 32, maxx*32 + 32))
groupnum += 1
return boxes
# fig = plt.figure(figsize=(10,10))
# a = fig.add_subplot(2,2,1)
# a.imshow(1 - gen, cmap="Greys", interpolation="nearest")
# a = fig.add_subplot(2,2,2)
# a.imshow(zones, cmap="Greys", interpolation="nearest")
# a = fig.add_subplot(2,2,3)
# a.imshow(open_cv_image, interpolation="nearest")
# plt.show()
# model = Inpaint()
# # model.train()
# model.load()
# model.test()