forked from data-apis/array-api-compat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_aliases.py
547 lines (482 loc) · 16.1 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
"""
These are functions that are just aliases of existing functions in NumPy.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
import numpy as np
from typing import Optional, Sequence, Tuple, Union
from ._typing import ndarray, Device, Dtype, NestedSequence, SupportsBufferProtocol
from typing import NamedTuple
from types import ModuleType
import inspect
from ._helpers import _check_device, _is_numpy_array, array_namespace
# These functions are modified from the NumPy versions.
def arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs
) -> ndarray:
_check_device(xp, device)
return xp.arange(start, stop=stop, step=step, dtype=dtype, **kwargs)
def empty(
shape: Union[int, Tuple[int, ...]],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs
) -> ndarray:
_check_device(xp, device)
return xp.empty(shape, dtype=dtype, **kwargs)
def empty_like(
x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
**kwargs
) -> ndarray:
_check_device(xp, device)
return xp.empty_like(x, dtype=dtype, **kwargs)
def eye(
n_rows: int,
n_cols: Optional[int] = None,
/,
*,
xp,
k: int = 0,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.eye(n_rows, M=n_cols, k=k, dtype=dtype, **kwargs)
def full(
shape: Union[int, Tuple[int, ...]],
fill_value: Union[int, float],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.full(shape, fill_value, dtype=dtype, **kwargs)
def full_like(
x: ndarray,
/,
fill_value: Union[int, float],
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.full_like(x, fill_value, dtype=dtype, **kwargs)
def linspace(
start: Union[int, float],
stop: Union[int, float],
/,
num: int,
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
endpoint: bool = True,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.linspace(start, stop, num, dtype=dtype, endpoint=endpoint, **kwargs)
def ones(
shape: Union[int, Tuple[int, ...]],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.ones(shape, dtype=dtype, **kwargs)
def ones_like(
x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.ones_like(x, dtype=dtype, **kwargs)
def zeros(
shape: Union[int, Tuple[int, ...]],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.zeros(shape, dtype=dtype, **kwargs)
def zeros_like(
x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.zeros_like(x, dtype=dtype, **kwargs)
# np.unique() is split into four functions in the array API:
# unique_all, unique_counts, unique_inverse, and unique_values (this is done
# to remove polymorphic return types).
# The functions here return namedtuples (np.unique() returns a normal
# tuple).
class UniqueAllResult(NamedTuple):
values: ndarray
indices: ndarray
inverse_indices: ndarray
counts: ndarray
class UniqueCountsResult(NamedTuple):
values: ndarray
counts: ndarray
class UniqueInverseResult(NamedTuple):
values: ndarray
inverse_indices: ndarray
def _unique_kwargs(xp):
# Older versions of NumPy and CuPy do not have equal_nan. Rather than
# trying to parse version numbers, just check if equal_nan is in the
# signature.
s = inspect.signature(xp.unique)
if 'equal_nan' in s.parameters:
return {'equal_nan': False}
return {}
def unique_all(x: ndarray, /, xp) -> UniqueAllResult:
kwargs = _unique_kwargs(xp)
values, indices, inverse_indices, counts = xp.unique(
x,
return_counts=True,
return_index=True,
return_inverse=True,
**kwargs,
)
# np.unique() flattens inverse indices, but they need to share x's shape
# See https://github.com/numpy/numpy/issues/20638
inverse_indices = inverse_indices.reshape(x.shape)
return UniqueAllResult(
values,
indices,
inverse_indices,
counts,
)
def unique_counts(x: ndarray, /, xp) -> UniqueCountsResult:
kwargs = _unique_kwargs(xp)
res = xp.unique(
x,
return_counts=True,
return_index=False,
return_inverse=False,
**kwargs
)
return UniqueCountsResult(*res)
def unique_inverse(x: ndarray, /, xp) -> UniqueInverseResult:
kwargs = _unique_kwargs(xp)
values, inverse_indices = xp.unique(
x,
return_counts=False,
return_index=False,
return_inverse=True,
**kwargs,
)
# xp.unique() flattens inverse indices, but they need to share x's shape
# See https://github.com/numpy/numpy/issues/20638
inverse_indices = inverse_indices.reshape(x.shape)
return UniqueInverseResult(values, inverse_indices)
def unique_values(x: ndarray, /, xp) -> ndarray:
kwargs = _unique_kwargs(xp)
return xp.unique(
x,
return_counts=False,
return_index=False,
return_inverse=False,
**kwargs,
)
def astype(x: ndarray, dtype: Dtype, /, *, copy: bool = True) -> ndarray:
if not copy and dtype == x.dtype:
return x
return x.astype(dtype=dtype, copy=copy)
# These functions have different keyword argument names
def std(
x: ndarray,
/,
xp,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0, # correction instead of ddof
keepdims: bool = False,
**kwargs,
) -> ndarray:
return xp.std(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)
def var(
x: ndarray,
/,
xp,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0, # correction instead of ddof
keepdims: bool = False,
**kwargs,
) -> ndarray:
return xp.var(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)
# Unlike transpose(), the axes argument to permute_dims() is required.
def permute_dims(x: ndarray, /, axes: Tuple[int, ...], xp) -> ndarray:
return xp.transpose(x, axes)
# Creation functions add the device keyword (which does nothing for NumPy)
# asarray also adds the copy keyword
def _asarray(
obj: Union[
ndarray,
bool,
int,
float,
NestedSequence[bool | int | float],
SupportsBufferProtocol,
],
/,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
copy: "Optional[Union[bool, np._CopyMode]]" = None,
namespace = None,
**kwargs,
) -> ndarray:
"""
Array API compatibility wrapper for asarray().
See the corresponding documentation in NumPy/CuPy and/or the array API
specification for more details.
"""
if namespace is None:
try:
xp = array_namespace(obj, _use_compat=False)
except ValueError:
# TODO: What about lists of arrays?
raise ValueError("A namespace must be specified for asarray() with non-array input")
elif isinstance(namespace, ModuleType):
xp = namespace
elif namespace == 'numpy':
import numpy as xp
elif namespace == 'cupy':
import cupy as xp
elif namespace == 'dask.array':
import dask.array as xp
else:
raise ValueError("Unrecognized namespace argument to asarray()")
_check_device(xp, device)
if _is_numpy_array(obj):
import numpy as np
if hasattr(np, '_CopyMode'):
# Not present in older NumPys
COPY_FALSE = (False, np._CopyMode.IF_NEEDED)
COPY_TRUE = (True, np._CopyMode.ALWAYS)
else:
COPY_FALSE = (False,)
COPY_TRUE = (True,)
else:
COPY_FALSE = (False,)
COPY_TRUE = (True,)
if copy in COPY_FALSE:
# copy=False is not yet implemented in xp.asarray
raise NotImplementedError("copy=False is not yet implemented")
if (hasattr(xp, "ndarray") and isinstance(obj, xp.ndarray)) or hasattr(obj, "__array__"):
#print('hit me')
if dtype is not None and obj.dtype != dtype:
copy = True
#print(copy)
if copy in COPY_TRUE:
copy_kwargs = {}
if namespace != "dask.array":
copy_kwargs["copy"] = True
else:
# No copy kw in dask.asarray so we go thorugh np.asarray first
# (like dask also does) but copy after
if dtype is None:
# Same dtype copy is no-op in dask
#print("in here?")
return obj.copy()
import numpy as np
#print(obj)
obj = np.asarray(obj).copy()
#print(obj)
return xp.array(obj, dtype=dtype, **copy_kwargs)
return obj
return xp.asarray(obj, dtype=dtype, **kwargs)
# np.reshape calls the keyword argument 'newshape' instead of 'shape'
def reshape(x: ndarray,
/,
shape: Tuple[int, ...],
xp, copy: Optional[bool] = None,
**kwargs) -> ndarray:
if copy is True:
x = x.copy()
elif copy is False:
y = x.view()
y.shape = shape
return y
return xp.reshape(x, shape, **kwargs)
# The descending keyword is new in sort and argsort, and 'kind' replaced with
# 'stable'
def argsort(
x: ndarray, /, xp, *, axis: int = -1, descending: bool = False, stable: bool = True,
**kwargs,
) -> ndarray:
# Note: this keyword argument is different, and the default is different.
# We set it in kwargs like this because numpy.sort uses kind='quicksort'
# as the default whereas cupy.sort uses kind=None.
if stable:
kwargs['kind'] = "stable"
if not descending:
res = xp.argsort(x, axis=axis, **kwargs)
else:
# As NumPy has no native descending sort, we imitate it here. Note that
# simply flipping the results of xp.argsort(x, ...) would not
# respect the relative order like it would in native descending sorts.
res = xp.flip(
xp.argsort(xp.flip(x, axis=axis), axis=axis, **kwargs),
axis=axis,
)
# Rely on flip()/argsort() to validate axis
normalised_axis = axis if axis >= 0 else x.ndim + axis
max_i = x.shape[normalised_axis] - 1
res = max_i - res
return res
def sort(
x: ndarray, /, xp, *, axis: int = -1, descending: bool = False, stable: bool = True,
**kwargs,
) -> ndarray:
# Note: this keyword argument is different, and the default is different.
# We set it in kwargs like this because numpy.sort uses kind='quicksort'
# as the default whereas cupy.sort uses kind=None.
if stable:
kwargs['kind'] = "stable"
res = xp.sort(x, axis=axis, **kwargs)
if descending:
res = xp.flip(res, axis=axis)
return res
# nonzero should error for zero-dimensional arrays
def nonzero(x: ndarray, /, xp, **kwargs) -> Tuple[ndarray, ...]:
if x.ndim == 0:
raise ValueError("nonzero() does not support zero-dimensional arrays")
return xp.nonzero(x, **kwargs)
# sum() and prod() should always upcast when dtype=None
def sum(
x: ndarray,
/,
xp,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
**kwargs,
) -> ndarray:
# `xp.sum` already upcasts integers, but not floats or complexes
if dtype is None:
if x.dtype == xp.float32:
dtype = xp.float64
elif x.dtype == xp.complex64:
dtype = xp.complex128
return xp.sum(x, axis=axis, dtype=dtype, keepdims=keepdims, **kwargs)
def prod(
x: ndarray,
/,
xp,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
**kwargs,
) -> ndarray:
if dtype is None:
if x.dtype == xp.float32:
dtype = xp.float64
elif x.dtype == xp.complex64:
dtype = xp.complex128
return xp.prod(x, dtype=dtype, axis=axis, keepdims=keepdims, **kwargs)
# ceil, floor, and trunc return integers for integer inputs
def ceil(x: ndarray, /, xp, **kwargs) -> ndarray:
if xp.issubdtype(x.dtype, xp.integer):
return x
return xp.ceil(x, **kwargs)
def floor(x: ndarray, /, xp, **kwargs) -> ndarray:
if xp.issubdtype(x.dtype, xp.integer):
return x
return xp.floor(x, **kwargs)
def trunc(x: ndarray, /, xp, **kwargs) -> ndarray:
if xp.issubdtype(x.dtype, xp.integer):
return x
return xp.trunc(x, **kwargs)
# linear algebra functions
def matmul(x1: ndarray, x2: ndarray, /, xp, **kwargs) -> ndarray:
return xp.matmul(x1, x2, **kwargs)
# Unlike transpose, matrix_transpose only transposes the last two axes.
def matrix_transpose(x: ndarray, /, xp) -> ndarray:
if x.ndim < 2:
raise ValueError("x must be at least 2-dimensional for matrix_transpose")
return xp.swapaxes(x, -1, -2)
def tensordot(x1: ndarray,
x2: ndarray,
/,
xp,
*,
axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2,
**kwargs,
) -> ndarray:
return xp.tensordot(x1, x2, axes=axes, **kwargs)
def vecdot(x1: ndarray, x2: ndarray, /, xp, *, axis: int = -1) -> ndarray:
ndim = max(x1.ndim, x2.ndim)
x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
if x1_shape[axis] != x2_shape[axis]:
raise ValueError("x1 and x2 must have the same size along the given axis")
if hasattr(xp, 'broadcast_tensors'):
_broadcast = xp.broadcast_tensors
else:
_broadcast = xp.broadcast_arrays
x1_, x2_ = _broadcast(x1, x2)
x1_ = xp.moveaxis(x1_, axis, -1)
x2_ = xp.moveaxis(x2_, axis, -1)
res = x1_[..., None, :] @ x2_[..., None]
return res[..., 0, 0]
# isdtype is a new function in the 2022.12 array API specification.
def isdtype(
dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]], xp,
*, _tuple=True, # Disallow nested tuples
) -> bool:
"""
Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
Note that outside of this function, this compat library does not yet fully
support complex numbers.
See
https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
for more details
"""
if isinstance(kind, tuple) and _tuple:
return any(isdtype(dtype, k, xp, _tuple=False) for k in kind)
elif isinstance(kind, str):
if kind == 'bool':
return dtype == xp.bool_
elif kind == 'signed integer':
return xp.issubdtype(dtype, xp.signedinteger)
elif kind == 'unsigned integer':
return xp.issubdtype(dtype, xp.unsignedinteger)
elif kind == 'integral':
return xp.issubdtype(dtype, xp.integer)
elif kind == 'real floating':
return xp.issubdtype(dtype, xp.floating)
elif kind == 'complex floating':
return xp.issubdtype(dtype, xp.complexfloating)
elif kind == 'numeric':
return xp.issubdtype(dtype, xp.number)
else:
raise ValueError(f"Unrecognized data type kind: {kind!r}")
else:
# This will allow things that aren't required by the spec, like
# isdtype(np.float64, float) or isdtype(np.int64, 'l'). Should we be
# more strict here to match the type annotation? Note that the
# numpy.array_api implementation will be very strict.
return dtype == kind