Skip to content
/ GADMM Public

GADMM: fast and communication efficient framework for distributed machine learning

Notifications You must be signed in to change notification settings

aelgabli/GADMM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

796b59d · Jul 29, 2020

History

20 Commits
Jan 5, 2020
Jan 5, 2020
Jan 5, 2020
Dec 2, 2019
Jan 5, 2020
Jan 5, 2020
Jan 5, 2020
Jan 5, 2020
Feb 5, 2020
Jan 5, 2020
Dec 2, 2019
Jan 5, 2020
Jan 5, 2020
Feb 13, 2020
Jan 5, 2020
Jan 5, 2020
Jul 10, 2020
Dec 2, 2019
Dec 2, 2019
Jan 5, 2020
Jul 29, 2020
Jan 5, 2020
Jul 29, 2020
Dec 2, 2019
Dec 2, 2019
Jan 5, 2020
Jan 5, 2020
Jan 5, 2020
Jan 5, 2020

Repository files navigation

GADMM: fast and communication efficient framework for distributed machine learning

For linear regression on synthetic data, run LinearRegression_synthetic.m.

For linear regression on real data, run LinearRegression_real.m.

For logistic regression on synthetic data, run LogisticRegression_synthetic.m.

For logistic regression on real data, run LogisticRegression_real.m.

All codes will run regression tasks using our proposed algorithm (GADMM) and all baseline schemes described in our paper (see below).

For linear regression using D-GADMM (regression over dynamic network) and synthetic dataset run Dynamic_LinearRegression_Synthetic.m.

For linear regression using D-GADMM (regression over dynamic network) and real dataset run dynamic_LinearRegression_Real.m

To Compare D-GADMM with GADMM and standared ADMM (ADMM with parameter server. i.e., star topology) using synthetic dataset, run LinearRegression_gadmm_vs_admm.m

The datasets used in this code are available at: https://tiny.cc/gadmm_dataset

Citation

@article{elgabli2019gadmm, title={GADMM: Fast and communication efficient framework for distributed machine learning}, author={Elgabli, Anis and Park, Jihong and Bedi, Amrit S and Bennis, Mehdi and Aggarwal, Vaneet}, journal={arXiv preprint arXiv:1909.00047}, year={2019} }

About

GADMM: fast and communication efficient framework for distributed machine learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published