-
Notifications
You must be signed in to change notification settings - Fork 0
/
Slides.tex
620 lines (564 loc) · 19.6 KB
/
Slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
\documentclass{beamer}
% \documentclass[handout]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[acronyms]{glossaries}
\usepackage{color}
\usepackage{listings}
\usepackage{stmaryrd}
\usepackage{bussproofs}
\usepackage{appendixnumberbeamer}
\usetheme[progressbar=frametitle]{metropolis}
\include{definitions}
\titlegraphic{%
\begin{flushright}
\includegraphics[height=3.5cm]{Images/Bitmap/escudoUCMcolor.png}
\end{flushright}
}
\makeatletter
\setbeamertemplate{title page}{
\begin{minipage}[b][\paperheight]{\textwidth}
\vfill%
\ifx\inserttitle\@empty\else\usebeamertemplate*{title}\fi
\ifx\insertsubtitle\@empty\else\usebeamertemplate*{subtitle}\fi
\usebeamertemplate*{title separator}
\ifx\beamer@shortauthor\@empty\else\usebeamertemplate*{author}\fi
\ifx\insertdate\@empty\else\usebeamertemplate*{date}\fi
\ifx\insertinstitute\@empty\else\usebeamertemplate*{institute}\fi
\vspace*{-2.5cm}
\ifx\inserttitlegraphic\@empty\else\inserttitlegraphic\fi
\vspace*{1cm}
\end{minipage}
}
\makeatother
\title{\titulo}
\subtitle{Master's Degree in Formal Methods and Computer Engineering}
\date{July 7, 2022}
\author{\autor \\ Supervisor: Manuel Montenegro Montes}
\institute{Complutense University of Madrid}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
\end{frame}
\section{Introduction}
\begin{frame}{Motivation}
\begin{itemize}
\item \pause Light-weight program verification systems:
\begin{itemize}
\item \pause Allow specifying and verifying code
\item \pause Reduce human intervention
\end{itemize}
\item \pause Dafny:
\begin{itemize}
\item \pause Specify code with pre/postconditions
\item \pause Help the system by providing ghost verification annotations
\end{itemize}
\item \pause Dafny under the hood:
\begin{itemize}
\item \pause Compiled to Boogie, an \gls*{ir} for verification
\item \pause Verification conditions discharged by the Z3 theorem prover
\item \pause Compiled also to other programming languages
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{The Elixir programming language}
\begin{itemize}
\item \pause A functional programming language that runs on the Erlang Virtual Machine
\item \pause Dynamically typed
\item \pause Suitable for developing \gls*{dsl}s through macros
\item \pause Main current verification approaches:
\begin{itemize}
\item \pause Dialyzer (static)
\item \pause Property-based testing (dynamic)
\item \pause Both of them show the presence of errors rather than their absence
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Our aim}
Provide a system similar to Dafny but specialized for Elixir
and implemented in Elixir itself
\pause \bigskip
\begin{center}
\includegraphics[width=\textwidth]{Images/Vectorial/Diagram.pdf}
\url{https://github.com/adrianen-ucm/verixir-project}
\end{center}
\pause \bigskip
Scope: only a subset of sequential Elixir for the moment, and partial
verification (i.e. not verifying termination)
\end{frame}
\begin{frame}[fragile]{A valid Elixir program}
\small
\begin{lstlisting}[language=elixir,numbers=none,frame=none]
result =
if selector === 1 do
1
else
false
end
result =
if selector === 1 do
result + 1
else
not result
end
\end{lstlisting}
\end{frame}
\begin{frame}{Plan}
\begin{enumerate}
\item \pause \acrshort*{smt} solver integration in Elixir
\item \pause L0, a low level language close to the \acrshort*{smt} solver
\item \pause L1, a verification \gls*{ir} for dynamically typed Elixir expressions
\item \pause L2, a high level language that models Elixir + verification annotations
\end{enumerate}
\end{frame}
\section{SMT Solver Integration in Elixir}
\begin{frame}{Elixir SMT-LIB binding}
We have developed an SMT-LIB (an SMT standard) binding for Elixir with the following features:
\begin{itemize}
\item \pause A \gls*{dsl} for a subset of SMT-LIB
\item \pause Different \acrshort*{smt} solvers that implement SMT-LIB can be easily integrated
\item \pause Out-of-the-box support for Z3
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Elixir SMT-LIB binding example}
\small
\begin{lstlisting}[language=elixir,numbers=none,frame=none]
import SmtLib
with_local_conn do
declare_const x: Int,
y: Int
assert !(
(:x + 3 <= :y + 3) ~> (:x <= :y)
)
check_sat
end
\end{lstlisting}
\end{frame}
\begin{frame}{The L0 language}
\begin{itemize}
\item \pause The lowest level language of our verification stack
\item \pause Close to the \acrshort*{smt} solver
\item \pause Restricted SMT-LIB + control flow + failure
\end{itemize}
\end{frame}
\begin{frame}{L0 expressions syntax}
\[
\begin{array}{rcll}
\Exp{0} \ni \epsilon & ::= & \skipE \\
& | & \failE \\
& | & \epsilon_1;\epsilon_2 \\
& | & \localE~\epsilon \\
& | & \addE~\varphi \\
& | & \declareE{x} \\
& | & \whenUnsatE{\epsilon_1}{\epsilon_2}{\epsilon_3} \\
\end{array}
\]
\pause where $x \in V$ is a variable name and $\varphi \in \mathbb{F}$ is a
formula with many-sorted terms $t \in \mathbb{T}$
\end{frame}
% \begin{frame}{L0 big-step operational semantics}
% Notation:
% \begin{itemize}
% \item \pause $X \subseteq V$ set of variable names
% \item \pause $\Phi \subseteq \mathbb{F}$ set of formulas
% \item \pause $\mathbb{F}(X)$ subset of $\mathbb{F}$ with free variables in $X$
% \item \pause $(X, \Phi)$ SMT solver state
% \item \pause $\BS{\epsilon}{X}{\Phi}{(X', \Phi')}$ judgement
% \end{itemize}
% \end{frame}
% \begin{frame}{L0 big-step operational semantics}
% \begin{prooftree}
% \AxiomC{ }
% \UnaryInfC{$\BS{\skipE}{X}{\Phi}{(X, \Phi)}$}
% \end{prooftree}
% \pause \medskip
% \begin{prooftree}
% \AxiomC{$\varphi \in \mathbb{F}(X)$}
% \UnaryInfC{$\BS{\addE~\varphi}{X}{\Phi}{(X, \Phi \cup \{\varphi\})}$}
% \end{prooftree}
% \pause \medskip
% \begin{prooftree}
% \AxiomC{$x \notin X$}
% \UnaryInfC{$\BS{\declareE{x}}{X}{\Phi}{(X \cup \{x\}, \Phi)}$}
% \end{prooftree}
% \pause \medskip
% \begin{prooftree}
% \AxiomC{$\BS{\epsilon_1}{X}{\Phi}{(X', \Phi')}$}
% \AxiomC{$\BS{\epsilon_2}{X'}{\Phi'}{(X'', \Phi'')}$}
% \BinaryInfC{$\BS{\epsilon_1;\epsilon_2}{X}{\Phi}{(X'', \Phi'')}$}
% \end{prooftree}
% \end{frame}
% \begin{frame}{L0 big-step operational semantics}
% \begin{prooftree}
% \AxiomC{$\BS{\epsilon}{X}{\Phi}{(X', \Phi')}$}
% \UnaryInfC{$\BS{\localE~\epsilon}{X}{\Phi}{(X, \Phi)}$}
% \end{prooftree}
% \pause \medskip
% \begin{prooftree}
% \AxiomC{$\BS{\epsilon_1}{X}{\Phi}{(X', \Phi')}$}
% \AxiomC{$\unsat{\Phi'}$}
% \AxiomC{$\BS{\epsilon_2}{X}{\Phi}{(X'', \Phi'')}$}
% \TrinaryInfC{$\BS{\whenUnsatE{\epsilon_1}{\epsilon_2}{\epsilon_3}}{X}{\Phi}{(X'', \Phi'')}$}
% \end{prooftree}
% \pause \medskip
% \begin{prooftree}
% \AxiomC{$\BS{\epsilon_1}{X}{\Phi}{(X', \Phi')}$}
% \AxiomC{$\neg\unsat{\Phi'}$}
% \AxiomC{$\BS{\epsilon_3}{X}{\Phi}{(X'', \Phi'')}$}
% \TrinaryInfC{$\BS{\whenUnsatE{\epsilon_1}{\epsilon_2}{\epsilon_3}}{X}{\Phi}{(X'', \Phi'')}$}
% \end{prooftree}
% \end{frame}
% \begin{frame}[fragile]{L0 Elixir implementation}
% A simple implementation in Elixir is straightforward by using our SMT-LIB binding
% \small
% \pause \bigskip
% \begin{lstlisting}[language=elixir,numbers=none,frame=none]
% defmacro eval(conn, {:local, _, [e]}) do
% quote do
% conn = unquote(conn)
% :ok = push conn
% eval conn, unquote(e)
% :ok = pop conn
% end
% end
% \end{lstlisting}
% \end{frame}
\begin{frame}[fragile]{L0 Elixir example}
\small
\begin{lstlisting}[language=elixir,numbers=none,frame=none]
eval conn do
declare_const :x
when_unsat add :x != :x do
skip # Does not reach fail
else
fail
end
end
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]{L0 Elixir example}
\small
\begin{lstlisting}[language=elixir,numbers=none,frame=none]
eval conn do
declare_const :x
when_unsat add :x == :x do
skip
else
fail # Reaches fail
end
end
\end{lstlisting}
\end{frame}
\section{Intermediate Representation for Verification}
\begin{frame}{The L1 language}
\begin{itemize}
\item \pause \gls*{ir} for Verification
\item \pause It models dynamically typed Elixir expressions
\item \pause Statements for writing verification annotations (ghost code)
\end{itemize}
\end{frame}
\begin{frame}{L1 expressions syntax}
\[
\begin{array}{rcll}
\Exp{1} \ni e & ::= & c \\
& | & x \\
& | & \andE{e_1}{e_2} \\
& | & \orE{e_1}{e_2} \\
& | & [] \\
& | & [e_1~|~e_2] \\
& | & \{e_1, \ldots, e_n\} \\
& | & f(e_1, \ldots, e_n) \\
\end{array}
\]
\pause where $c$ is a constant literal of a simple type, currently integer or
boolean, and $f \in \Sigma^1$ a function name
\end{frame}
\begin{frame}{L1 statements syntax}
\[
\begin{array}{rcll}
\Stm \ni S & ::= & \skipE \\
& | & \blockE~S \\
& | & \havocE~x \\
& | & S_1;S_2 \\
& | & \assumeE~e \\
& | & \assertE~e \\
& | & \unfoldE~f(e_1, \dots, e_n) \\
\end{array}
\]
\end{frame}
\begin{frame}[fragile]{Built-in SMT-LIB declarations}
Prelude to represent L1 expressions in the underlying many-sorted logic
(all of them have sort $\Term$ and can be associated to a $\mathit{Type}$):
\pause
\small
\begin{verbatim}
(declare-sort Term 0)
(declare-sort Type 0)
...
(declare-const int Type)
(declare-const bool Type)
(assert (distinct int bool))
...
(declare-fun type (Term) Type)
(define-fun is_integer ((x Term)) Bool
(= (type x) int)
)
...
\end{verbatim}
\end{frame}
\begin{frame}{Built-in L1 specifications}
Built-in \textbf{sets} of pair/postconditions for functions to
model their behavior in Elixir
\pause
\[
\begin{array}{l}
\{ \isinteger{x} \wedge \isinteger{y} \}\\
x~\texttt{+}~y\\
\{ \\
\quad\isinteger{\widehat{+}(x, y)} \wedge \\
\quad\integervalue{\widehat{+}(x, y)} = \integervalue{x} + \integervalue{y} \\
\}
\end{array}
\]
\pause
There could be more for other types (e.g. float)
\end{frame}
\begin{frame}{Translation from L1 into L0}
\[
\begin{array}{ll}
\trExp{\_}{\_} : & \Exp{0} \times \Exp{1} \rightarrow \Exp{0} \times \mathbb{T}\\
\trStm{\_} : & \Stm \rightarrow \Exp{0}
\end{array}
\]
\pause
$\trExp{\gamma}{e}$ returns a tuple $(\epsilon, t)$ where
\begin{itemize}
\item \pause $\epsilon$ is an L0 expression that models the semantics of $e$
\item \pause $t$ is a term in the underlying logic to refer to the result of $e$
\item \pause $\gamma$ models known facts by the time $e$ is evaluated
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Translation of L1 lists}
\[
\begin{array}{l}
\trExp{\_}{[]} \equiv (
\skipE, \mathit{nil}
)\\
\trExp{\gamma}{[e_1~|~e_2]} \equiv (\epsilon_1;\epsilon_2;\epsilon, t)\\
\qquad \textbf{where } (\epsilon_1, t_1) = \trExp{\gamma}{e_1}\\
\qquad \phantom{\textbf{where }} (\epsilon_2, t_2) = \trExp{\gamma}{e_2}\\
\qquad \phantom{\textbf{where }} t = \mathit{cons}(t_1, t_2)\\
\qquad \phantom{\textbf{where }} \epsilon = \left[
\begin{array}{l}
\addE~\isnelist{t};\\
\addE~\mathit{hd}(t) = t_1;\\
\addE~\mathit{tl}(t) = t_2\\
\end{array}
\right]
\end{array}
\]
\medskip \pause
\textbf{Remember:} the constants and functions involved in the result of the translation
must be defined in the \acrshort*{smt} prelude. For example:
\begin{verbatim}
(declare-const nil Term)
(declare-fun cons (Term Term) Term)
\end{verbatim}
\end{frame}
% \begin{frame}{Translation of L1 lists example}
% \[
% \begin{array}{l}
% \trExp{\gamma}{[2, x]} \equiv (\epsilon, \mathit{cons}(2, \mathit{cons}(\hat{x}, \mathit{nil})))\\
% \qquad \textbf{where } \epsilon = \left[
% \begin{array}{l}
% \addE~\mathit{is\mbox{-}integer}(\mathit{integer\mbox{-}lit}(2));\\
% \addE~\mathit{integer\mbox{-}value}(\mathit{integer\mbox{-}lit}(2)) = 2;\\
% \addE~\isnelist{\mathit{cons}(\hat{x}, \mathit{nil})};\\
% \addE~\mathit{hd}(\mathit{cons}(\hat{x}, \mathit{nil})) = \hat{x};\\
% \addE~\mathit{tl}(\mathit{cons}(\hat{x}, \mathit{nil})) = \mathit{nil};\\
% \addE~\isnelist{\mathit{cons}(2, \mathit{cons}(\hat{x}, \mathit{nil}))};\\
% \addE~\mathit{hd}(\mathit{cons}(2, \mathit{cons}(\hat{x}, \mathit{nil}))) = 2;\\
% \addE~\mathit{tl}(\mathit{cons}(2, \mathit{cons}(\hat{x}, \mathit{nil}))) = \mathit{cons}(\hat{x}, \mathit{nil});\\
% \end{array}
% \right]
% \end{array}
% \]
% \end{frame}
% \begin{frame}[fragile]{L1 Elixir implementation}
% Our implementation is quite direct from the formalization
% \pause
% \small
% \begin{lstlisting}[language=elixir,numbers=none,frame=none]
% def tr_exp(_, [{:|, _, [h, t]}]) do
% {h, h_sem} = tr_exp(_, h)
% {y, t_sem} = tr_exp(_, t)
% t =
% quote(do: :cons.(unquote(h), unquote(t)))
% { t, quote do
% unquote(h_sem)
% unquote(t_sem)
% add :is_nonempty_list.(unquote(t))
% add :hd.(unquote(t)) == unquote(h)
% add :tl.(unquote(t)) == unquote(t)
% end }
% end
% \end{lstlisting}
% \end{frame}
\begin{frame}[fragile]{L1 Elixir example}
\small
\begin{lstlisting}[language=elixir,numbers=none,frame=none]
import Boogiex
with_local_env do
assert (false or 2) === 2
assert elem({1, 2, 3}, 0) === 1
assert true or true + true
havoc x
assert x === x
assert not (x !== x)
end
\end{lstlisting}
\end{frame}
\section{Elixir Code Verification}
\begin{frame}{The L2 language}
\begin{itemize}
\item \pause The highest level language of our verification stack
\item \pause A subset of Elixir + ghost verification annotations
\end{itemize}
\end{frame}
\begin{frame}{L2 expressions syntax}
\[
\begin{array}{rcll}
\Exp{2} \ni E & ::= & e \\
& | & P = E \\
& | & \emptyE \\
& | & E_1; E_2 \\
& | & \caseE~E~\doW \\
& & \quad P_1~\whenE~f_1 \rightarrow E_1 \\
& & \quad \vdots\\
& & \quad P_n~\whenE~f_n \rightarrow E_n \\
& & \Wend \\
& | & \ghostE~\doW~S~\Wend \\
\end{array}
\]
\pause where $e, f_1, \dots, f_n \in \Exp{1}$ and $P, P_1, \dots P_n$ are patterns:
\[
\Pat \ni P ::= c \mid x \mid [\:] \mid [P_1 \mid P_2] \mid \{ P_1, \ldots, P_n \}
\]
\end{frame}
\begin{frame}{Translation from L2 into L1}
\[
\begin{array}{ll}
\trEXP{\_} : \Exp{2} \rightarrow [\Stm \times \Exp{1}]\\
\trMatch{\_}{\_} : \Exp{1} \times \Pat \rightarrow \Exp{1}
\end{array}
\]
\pause $\trEXP{E}$ generates a sequence of pairs $(S, e)$ where
\begin{itemize}
\item \pause $S$ is an L1 statement that models the semantics of $E$
\item \pause $e$ is an L1 expression that represents the result to which $E$ is evaluated
\item \pause Each pair corresponds to an execution path
\end{itemize}
\end{frame}
% \begin{frame}{Translation of L2 lists pattern matching}
% $\trMatch{e}{P}$ returns an L1 expression that is a $\mathit{boolean}$
% term and is evaluated to $\true$ if and only if $e$ matches $P$
% \pause
% \[
% \begin{array}{l}
% \trMatch{e}{[P_1\mid P_2]} = \\
% \qquad\textit{is-nelist}(e)~\mathbf{and}\\
% \qquad\trMatch{\textit{hd}(e)}{P_1}~\mathbf{and}\\
% \qquad\trMatch{\textit{tl}(e)}{P_2}
% \end{array}
% \]
% \end{frame}
\begin{frame}{Translation of L2 pattern matching expressions}
\[
\begin{array}{l}
\trEXP{P = E} = [(S_1;S_1',e_1), \dots, (S_n;S_n', e_n)] \\
\qquad
\begin{array}{ll}
\textbf{where} & [(S_1,e_1),\dots,(S_n, e_n)] = \trEXP{E} \\
& \{y_1, \ldots, y_m\} = \mathit{vars}(P) \\
& \forall i \in \{1..n\}: S_i' = \left(
\begin{array}{l}
\assertE~\trMatch{e_i}{P};\\
\havocE~y_1;\\
\vdots\\
\havocE~y_m;\\
\assumeE~e_i ~\texttt{===}~ P\\
\end{array}
\right)
\end{array}
\end{array}
\]
\end{frame}
\begin{frame}{Verifying user-defined functions}
A single clause of a function with arity $n$:
\[
\mathit{def} \equiv \left(\{ p \} \quad (P_1, \dots, P_n)~B \quad \{ q \} \right)
\]
\pause where $p \in \Exp{1}$ and $q \in \Exp{1}$ denote a specified precondition and a
postcondition, $P_1, \dots, P_n$ are the parameter patterns and $B \in \Exp{2}$
is its defined body
\pause \medskip
Clauses of a function $f$ with arity $n$:
\[
\Defs{f/n} = (\mathit{def}_1,\dots,\mathit{def}_k)
\]
\end{frame}
\begin{frame}{Verifying user-defined functions}
\begin{enumerate}
\item \pause Transform the function definition clauses into an L2 case
expression with the parameter variables free and a branch that trivially matches
\item \pause Apply Static Single-Assignment to allow rebinding of variables
\item \pause Translate into the corresponding execution paths in our \gls*{ir}
\item \pause Translate each path into an L0 expression
\item \pause Verify paths independently of each other
\end{enumerate}
\pause \textbf{Note:} our formalization does not address currently the verification
of user-defined function invocations (i.e. their specifications and body unfolding),
but our implementation does it by automatically generating ghost code
\end{frame}
% \begin{frame}[fragile]{L2 Elixir implementation}
% Again, our implementation is quite direct from the formalization
% \pause
% \small
% \begin{lstlisting}[language=elixir,numbers=none,frame=none]
% def tr_match({:|, _, [p1, p2]}, e) do
% tr_1 =
% tr_match(p1, quote(do: hd(unquote(e))))
% tr_2 =
% tr_match(p2, quote(do: tl(unquote(e))))
% quote(do:
% is_list(unquote(e)) and
% unquote(e) !== [] and
% unquote(tr_1) and unquote(tr_2)
% )
% end
% \end{lstlisting}
% \end{frame}
\begin{frame}[plain,c]{L2 Elixir example}
\begin{center}
\Huge Live demo
\end{center}
\end{frame}
\section{Conclusions}
\begin{frame}{Conclusions}
\begin{itemize}
\item \pause We have developed a framework for Elixir code verification across several areas (i.e. \acrshort*{smt} solver integration, verification \gls*{ir} and code verification)
\item \pause Future work may address concurrent code and total verification
\item \pause Also, we have left several improvements on the way:
\begin{itemize}
\item \pause More of the SMT-LIB standard and support for other \acrshort*{smt} solvers
\item \pause Extend our \gls*{ir} to model more Elixir value types and built-in functions
\item \pause Extend the Elixir subset to verify (e.g. pin operator and higher-order)
\item \pause The current implementation is in an early proof of concept stage
\end{itemize}
\end{itemize}
\end{frame}
\appendix
\maketitle
\end{document}