-
Notifications
You must be signed in to change notification settings - Fork 8
/
create_cistarget_track_databases.py
executable file
·430 lines (364 loc) · 14.7 KB
/
create_cistarget_track_databases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/usr/bin/env python3
"""
Purpose : Create cisTarget track databases.
Copyright (C): 2019-2022 - Gert Hulselmans
"""
import argparse
import multiprocessing as mp
import os
import random
import shutil
import sys
import time
from typing import Tuple
import pandas as pd
from bigwigaverageoverbed import (
get_track_id_to_filename_dict,
run_bigwig_average_over_bed_for_track,
)
from cistarget_db import (
CisTargetDatabase,
DatabaseTypes,
MotifOrTrackIDs,
MotifsOrTracksType,
RegionOrGeneIDs,
)
def main():
parser = argparse.ArgumentParser(description="Create cisTarget track databases.")
parser.add_argument(
"-b",
"--bed",
dest="bed_filename",
action="store",
type=str,
required=True,
help="BED filename which contains the regions/genes to score with bigWigAverageOverBed for each bigwig track "
"(ChIP-seq) files.",
)
parser.add_argument(
"-T",
"--tracks_dir",
dest="tracks_dir",
action="store",
type=str,
required=True,
help="Path to directory with bigwig track (ChIP-seq) files.",
)
parser.add_argument(
"-d",
"--tracks",
dest="tracks_list_filename",
action="store",
type=str,
required=True,
help='Filename with list of track IDs to be scored from directory specified by "--tracks_dir".',
)
parser.add_argument(
"-o",
"--output",
dest="db_prefix",
action="store",
type=str,
required=True,
help="Feather database prefix output filename.",
)
parser.add_argument(
"-a",
"--bwaob",
dest="bigwig_average_over_bed_path",
action="store",
type=str,
required=False,
default="bigWigAverageOverBed",
help="Path to bigWigAverageOverBed "
"(http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/bigWigAverageOverBed). "
'Default: "bigWigAverageOverBed".',
)
parser.add_argument(
"-t",
"--threads",
dest="nbr_threads",
action="store",
type=int,
required=False,
default=1,
help="Number of threads to use when scoring tracks. Default: 1.",
)
parser.add_argument(
"-p",
"--partial",
dest="partial",
nargs=2,
metavar=("CURRENT_PART", "NBR_TOTAL_PARTS"),
action="store",
type=int,
required=False,
help="Divide the tracks list in a number of total parts (of similar size) and score only the part defined by "
"current_part. This allows creating partial databases on machines which do not have enough RAM to score "
"all tracks in one iteration. This will only create a partial regions/genes vs tracks scoring database "
"({db_prefix}.part_000{current_part}_of_000{nbr_total_parts}.regions_vs_tracks.scores.feather or "
"{db_prefix}.part_000{current_part}_of_000{nbr_total_parts}.genes_vs_tracks.scores.feather).",
)
parser.add_argument(
"-g",
"--genes",
dest="extract_gene_id_from_region_id_regex_replace",
action="store",
type=str,
required=False,
default=None,
help="Take top score for a gene by taking the maximum score of multiple regions for that gene. "
"Define a regex which will remove the non-gene part of the region ID, so only the gene ID remains. "
'Examples: "gene_id#some_number": "#[0-9]+$" or "region_id@@gene_id": "^.+@@".',
)
parser.add_argument(
"-s",
"--seed",
dest="seed",
action="store",
type=int,
required=False,
help="Random seed used for breaking ties when creating rankings for a range of tied scores. "
"When setting this seed to a specific value and running this script with the same input, will result in "
"the same rankings databases as output.",
)
parser.add_argument(
"-r",
"--ssh",
dest="ssh_command",
action="store",
type=str,
required=False,
help="If defined, run bigWigAverageOverBed over ssh by running the provided command to make the connection before "
"running bigWigAverageOverBed itself. "
"Example: 'ssh -o ControlMaster=auto -o ControlPath=/tmp/ssh-control-path-%%l-%%h-%%p-%%r -o ControlPersist=600 <hostname>'",
)
args = parser.parse_args()
if not os.path.exists(args.bed_filename):
print(
f'Error: BED region IDs filename "{args.bed_filename}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if not os.path.exists(args.tracks_dir):
print(
f'Error: Track directory "{args.tracks_dir}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if not os.path.exists(args.tracks_list_filename):
print(
f'Error: Tracks list filename "{args.tracks_list_filename}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if os.path.dirname(args.db_prefix) and not os.path.exists(
os.path.dirname(args.db_prefix)
):
print(
f'Error: Parent directory "{os.path.dirname(args.db_prefix)}" for Feather database prefix output filename '
"does not exist.",
file=sys.stderr,
)
sys.exit(1)
if args.partial:
current_part, nbr_total_parts = args.partial
if current_part < 1 or current_part > nbr_total_parts:
print(
f"Error: Current part ({current_part}) should be between 1 and the number of total parts "
f"({nbr_total_parts}).",
file=sys.stderr,
)
sys.exit(1)
# Add info about which part of the database this wil be.
db_prefix = f"{args.db_prefix}.part_{current_part:04d}_of_{nbr_total_parts:04d}"
else:
db_prefix = args.db_prefix
# Get absolute path to bigWigAverageOverBed binary and see if it can be executed.
bigwig_average_over_bed_path = shutil.which(args.bigwig_average_over_bed_path)
if not bigwig_average_over_bed_path:
print(
f'Error: bigWigAverageOverBed binary ("{args.bigwig_average_over_bed_path}") could not be found or is not executable.'
)
sys.exit(1)
# Set random seed to provided input value or a random integer.
seed = args.seed if args.seed else random.randint(0, 2**64)
# Get all region or gene IDs from the FASTA sequence names as a RegionOrGeneIDs object.
region_or_gene_ids = RegionOrGeneIDs.get_region_or_gene_ids_from_bed(
bed_filename=args.bed_filename,
extract_gene_id_from_region_id_regex_replace=args.extract_gene_id_from_region_id_regex_replace,
)
# Get absolute path name for BED filename so in case bigWigAverageOverBed is ran over ssh, the BED file can be found.
bed_filename = os.path.abspath(args.bed_filename)
# Get track ID to track bigWig file name mapping for
# a(n optionally) filtered list of track IDs:
# - if partial is set
track_id_to_filename_dict = get_track_id_to_filename_dict(
tracks_dir=os.path.abspath(args.tracks_dir),
tracks_list_filename=args.tracks_list_filename,
partial=(current_part, nbr_total_parts) if args.partial else None,
)
# Create MotifOrTracksIDs object from plain motif IDs.
track_ids = MotifOrTrackIDs(
motif_or_track_ids=set(track_id_to_filename_dict),
motifs_or_tracks_type=MotifsOrTracksType.TRACKS,
)
nbr_region_or_gene_ids = len(region_or_gene_ids)
nbr_tracks = len(track_id_to_filename_dict)
if nbr_region_or_gene_ids == 0:
print(f"Error: No {region_or_gene_ids.type.value} provided.", file=sys.stderr)
sys.exit(1)
if nbr_tracks == 0:
print("Error: No tracks provided.", file=sys.stderr)
sys.exit(1)
print(
f"Initialize dataframe ({nbr_region_or_gene_ids} {region_or_gene_ids.type.value} "
f"x {nbr_tracks} tracks) for storing track scores for each {region_or_gene_ids.type.value} per track.",
file=sys.stderr,
)
ct_scores_db_tracks_vs_regions_or_genes = CisTargetDatabase.create_db(
db_type=DatabaseTypes.from_strings(
scores_or_rankings="scores",
column_kind="tracks",
row_kind=region_or_gene_ids.type.value,
),
region_or_gene_ids=region_or_gene_ids,
motif_or_track_ids=track_ids,
order="F",
)
def write_track_scores_for_track_to_ct_scores_db(
track_id_and_df_track_scores: Tuple[str, pd.DataFrame]
) -> None:
if (
"nbr_of_scored_tracks"
not in write_track_scores_for_track_to_ct_scores_db.__dict__
):
write_track_scores_for_track_to_ct_scores_db.nbr_of_scored_tracks = 0
track_id, df_track_scores = track_id_and_df_track_scores
start_time = time.monotonic()
ct_scores_db_tracks_vs_regions_or_genes.update_scores_for_motif_or_track(
motif_or_track_id=track_id,
df_scores_for_motif_or_track=df_track_scores["track_score"],
)
elapsed_time = time.monotonic() - start_time
write_track_scores_for_track_to_ct_scores_db.nbr_of_scored_tracks += 1
print(
f"Adding bigWigAverageOverBed track scores ({write_track_scores_for_track_to_ct_scores_db.nbr_of_scored_tracks:d} of "
f'{nbr_tracks:d}) for track "{track_id:s}" took {elapsed_time:0.6f} seconds.',
file=sys.stderr,
)
def report_error(exception: BaseException) -> None:
print(exception, file=sys.stderr)
with mp.Pool(processes=args.nbr_threads) as pool:
for track_id, track_filename in track_id_to_filename_dict.items():
# Score all regions/genes in the FASTA file for the current track and write the result in the
# ct_scores_db_tracks_vs_regions_or_genes CisTargetDatabase object.
pool.apply_async(
func=run_bigwig_average_over_bed_for_track,
args=[
bigwig_average_over_bed_path,
bed_filename,
track_filename,
track_id,
args.extract_gene_id_from_region_id_regex_replace,
"max",
args.ssh_command,
],
callback=write_track_scores_for_track_to_ct_scores_db,
error_callback=report_error,
)
# Prevents any more task from being submitted to the pool.
pool.close()
# Wait for worker processes to exit.
pool.join()
if (
"nbr_of_scored_tracks"
not in write_track_scores_for_track_to_ct_scores_db.__dict__
):
print(
f"Error: None of {nbr_tracks:d} tracks were scored successfully.",
file=sys.stderr,
)
sys.exit(1)
elif (
write_track_scores_for_track_to_ct_scores_db.nbr_of_scored_tracks != nbr_tracks
):
print(
f"Error: Only {write_track_scores_for_track_to_ct_scores_db.nbr_of_scored_tracks:d} out of {nbr_tracks:d} "
f"tracks were scored successfully.",
file=sys.stderr,
)
sys.exit(1)
print("", file=sys.stderr)
def write_db(ct_db: CisTargetDatabase, db_prefix: str):
"""
Write cisTarget database to a Feather file and print database location and elapsed time.
:param ct_db: cisTarget database object.
:param db_prefix: Feather database file prefix.
:return:
"""
db_filename = ct_db.create_db_filename_from_db_prefix(
db_prefix=db_prefix, extension="feather"
)
print(
f"Writing cisTarget {ct_db.db_type.row_kind} vs {ct_db.db_type.column_kind} "
f'{ct_db.db_type.scores_or_rankings} db: "{db_filename}"'
)
start_time = time.monotonic()
ct_db.write_db(
db_prefix=db_prefix,
version=2,
)
elapsed_time = time.monotonic() - start_time
print(
f"Writing cisTarget {ct_db.db_type.row_kind} vs {ct_db.db_type.column_kind} "
f"{ct_db.db_type.scores_or_rankings} db took: {elapsed_time:.06f} seconds\n"
)
if not args.partial:
# Write cisTarget scores database (tracks vs regions or genes) to Feather file.
write_db(ct_db=ct_scores_db_tracks_vs_regions_or_genes, db_prefix=db_prefix)
# Create cisTarget scores database (regions or genes vs tracks) from (tracks vs regions or genes) version.
ct_scores_db_regions_or_genes_vs_tracks = (
ct_scores_db_tracks_vs_regions_or_genes.transpose()
)
# Write cisTarget scores database (regions or genes vs tracks) to Feather file.
write_db(ct_db=ct_scores_db_regions_or_genes_vs_tracks, db_prefix=db_prefix)
if not args.partial:
# Create cisTarget rankings database (tracks vs regions or genes) from cisTarget scores database filename
# (tracks vs regions or genes).
print(
f"""Create rankings from "{
ct_scores_db_tracks_vs_regions_or_genes.create_db_filename_from_db_prefix(
db_prefix=db_prefix,
extension='feather'
)
}" with random seed set to {seed}.""",
file=sys.stderr,
)
start_time = time.monotonic()
ct_rankings_db_tracks_vs_regions_or_genes = (
ct_scores_db_tracks_vs_regions_or_genes.convert_scores_db_to_rankings_db(
seed=seed
)
)
elapsed_time = time.monotonic() - start_time
print(
f"Creating cisTarget rankings db from cisTarget scores db took: "
f"{elapsed_time:.06f} seconds\n"
)
# Reclaim memory occupied by cisTarget scores databases.
del ct_scores_db_tracks_vs_regions_or_genes
del ct_scores_db_regions_or_genes_vs_tracks
# Do not write cisTarget rankings database (tracks vs regions or genes) to Feather file
# as it can take a very long time to write it (1.5 hours for 1 million regions) as the
# rankings database numpy array is in "C" order and writing a Feather database requires
# traversing the numpy array in column order.
# write_db(ct_db=ct_rankings_db_tracks_vs_regions_or_genes, db_prefix=db_prefix)
# Create cisTarget rankings database (regions or genes vs tracks) from (tracks vs regions or genes) version.
ct_rankings_db_regions_or_genes_vs_tracks = (
ct_rankings_db_tracks_vs_regions_or_genes.transpose()
)
# Write cisTarget rankings database (regions or genes vs tracks) to Feather file.
write_db(ct_db=ct_rankings_db_regions_or_genes_vs_tracks, db_prefix=db_prefix)
if __name__ == "__main__":
main()