|
| 1 | +import aesara.tensor as at |
| 2 | +from etuples import etuple, etuplize |
| 3 | +from kanren.facts import Relation, fact |
| 4 | +from unification import var |
| 5 | + |
| 6 | +conjugate = Relation("conjugate") |
| 7 | + |
| 8 | + |
| 9 | +def _create_beta_binomial_goal(): |
| 10 | + r"""Produce a goal that represents the application of Bayes theorem |
| 11 | + for a beta prior with a binomial observation model. |
| 12 | +
|
| 13 | + .. math:: |
| 14 | +
|
| 15 | + \begin{align*} |
| 16 | + p &\sim \operatorname{Beta}\left(\alpha, \beta\right)\\ |
| 17 | + y &\sim \operatorname{Binomial}\left(n, p\right) |
| 18 | + \end{align*} |
| 19 | +
|
| 20 | + If we observe :math:`y=Y`, then :math:`p` follows a beta distribution: |
| 21 | +
|
| 22 | + .. math:: |
| 23 | +
|
| 24 | + p \sim \operatorname{Beta}\left(\alpha + Y, \beta + n - Y\right) |
| 25 | +
|
| 26 | + """ |
| 27 | + |
| 28 | + # Beta-binomial observation model |
| 29 | + alpha_lv, beta_lv = var(), var() |
| 30 | + p_srng_lv = var() |
| 31 | + p_size_lv = var() |
| 32 | + p_type_idx_lv = var() |
| 33 | + p_lv = etuple( |
| 34 | + etuplize(at.random.beta), p_srng_lv, p_size_lv, p_type_idx_lv, alpha_lv, beta_lv |
| 35 | + ) |
| 36 | + n_lv = var() |
| 37 | + Y_lv = etuple(etuplize(at.random.binomial), var(), var(), var(), n_lv, p_lv) |
| 38 | + |
| 39 | + y_vv = var() # observation |
| 40 | + |
| 41 | + # Posterior distribution for p |
| 42 | + new_alpha_lv = etuple(etuplize(at.add), alpha_lv, y_vv) |
| 43 | + new_beta_lv = etuple( |
| 44 | + etuplize(at.add), beta_lv, n_lv, etuple(etuplize(at.neg), y_vv) |
| 45 | + ) |
| 46 | + p_posterior_lv = etuple( |
| 47 | + etuplize(at.random.beta), |
| 48 | + p_srng_lv, |
| 49 | + p_size_lv, |
| 50 | + p_type_idx_lv, |
| 51 | + new_alpha_lv, |
| 52 | + new_beta_lv, |
| 53 | + ) |
| 54 | + |
| 55 | + return (Y_lv, y_vv, p_posterior_lv) |
| 56 | + |
| 57 | + |
| 58 | +model, observation, posterior = _create_beta_binomial_goal() |
| 59 | +fact(conjugate, (model, observation), posterior) |
0 commit comments