Skip to content

Latest commit

 

History

History
65 lines (49 loc) · 2.65 KB

READEME.md

File metadata and controls

65 lines (49 loc) · 2.65 KB

TransPPI

TransPPI propose two types of deep transfer learning methods based on convolutional neural network (CNN) layers with pairwise position specific scoring matrix (PSSM) feature inputs to predict target human-virus protein-protein interactions (PPIs).

Usage

Step 0 Prepare PSSM files

cat ./x* > pssm.tar.gz tar -zxvf pssm.tar.gz

Step 1 Baseline method: pre-train DNN models (PSSM+CNN+MLP) on human-virus PPI source dataset.

./1_run_dnn.sh

Step 2 Two types of transfer learning methods and cross-viral tests.

a. Import and frozen the parameters of CNN layers of source domain, then train the DNN model (PSSM+CNN+MLP) on target dataset. ./2_run_transfer_frozen.sh

b. Import the parameters of CNN layers of source domain, then fine-tune parameters on target dataset. ./2_run_transfer_finetune.sh

c. Train the DNN model (PSSM+CNN+MLP) on a human-virus system and test the model on another human-virus system. ./2_run_cross_viruses.sh

Output

a. Run_result.txt - performance of various methods b. xx.h5 - deep learning models c. xx.txt - prediction result files containing label, pairwise protein ids and prediction score.

Notice

The human-virus systems and related parameters can be changed in the above shell scripts.

Dataset

Eight human-virus PPI systems. The ratio of positive-to-negative is 1:10. PSSM of human and viral proteins are deposited in 'script/pssm/'. 9880 human-HIV PPIs, 98800 non-human-HIV PPIs. 5966 human-Herpes PPIs, 59660 non-human-Herpes PPIs. 5099 human-Papilloma PPIs, 50990 non-human-Papilloma PPIs. 3044 human-Influenza PPIs, 30440 non-human-Influenza PPIs. 1300 human-Hepatitis PPIs, 13000 non-human-Hepatitis PPIs. 927 human-DENV PPIs, 9270 non-human-DENV PPIs. 709 human-ZIKV PPIs, 7090 non-human-ZIKV PPIs. 568 human-SARS-CoV-2 PPIs, 5680 non-human-SARS-CoV-2 PPIs.

Requirements

  • Tensorflow (==1.7.0)
  • Keras (==2.2.4)
  • scikit-learn (==0.22.1)
  • numpy (==1.16.6)

Use the following command to install all dependent packages

pip install requirements.txt

Reference

Part of the code was modified from https://github.com/muhaochen/seq_ppi and the corresponding reference is: Chen,M. et al. (2019) Multifaceted protein-protein interaction prediction based on Siamese residual RCNN. Bioinformatics, 35, i305–i314.

Citation

Please kindly cite the paper if you use refers to the paper, code or datasets. @article{Yang2021Transfer, title={Transfer learning via multi-scale convolutional neural layers for human-virus PPI prediction}, author={Yang, Xiaodi and Yang, Shiping and Lian, Xianyi and Wuchty, Stefan and Zhang, Ziding}, journal={xx} }