-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patharray_lib.v
226 lines (190 loc) · 8.55 KB
/
array_lib.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
(* monae: Monadic equational reasoning in Coq *)
(* Copyright (C) 2020 monae authors, license: LGPL-2.1-or-later *)
From mathcomp Require Import all_ssreflect.
From mathcomp Require boolp.
Require Import preamble.
From HB Require Import structures.
Require Import hierarchy monad_lib fail_lib.
(******************************************************************************)
(* Definitions and lemmas about the array monad *)
(* *)
(* aswap i j == swap the cells at addresses i and j; this is a *)
(* computation of type (M unit) *)
(* writeList i s == write the list s at address i; this is a *)
(* computation of type (M unit) *)
(* writeL i s := writeList i s >> Ret (size s) *)
(* write2L i (s, t) := writeList i (s ++ t) >> Ret (size s, size t) *)
(* write3L i (s, t, u) := writeList i (s ++ t ++ u) >> *)
(* Ret (size s, size t, size u) *)
(* readList i n == read the list of values of size n starting at *)
(* address i; it is a computation of type (M (seq E)) *)
(* where E is the type of stored elements *)
(* *)
(******************************************************************************)
Local Open Scope monae_scope.
Section aswap.
Context {S : Type} (I : eqType) {M : arrayMonad S I}.
Definition aswap i j : M unit :=
aget i >>= (fun x => aget j >>= (fun y => aput i y >> aput j x)).
Lemma aswapxx i : aswap i i = skip :> M unit.
Proof.
rewrite /aswap agetget.
under eq_bind do rewrite aputput.
by rewrite agetput.
Qed.
End aswap.
Arguments aswap {S I M}.
Section write_read.
Context {S : Type} {M : arrayMonad S nat}.
Implicit Type i j : nat.
Import Order.POrderTheory.
Fixpoint writeList i (s : seq S) : M unit :=
if s is x :: xs then aput i x >> writeList i.+1 xs else Ret tt.
#[global] Arguments writeList : simpl never.
Lemma writeList_nil i : writeList i [::] = Ret tt.
Proof. by []. Qed.
Lemma writeList_cons i (x : S) (xs : seq S) :
writeList i (x :: xs) = aput i x >> writeList i.+1 xs.
Proof. by []. Qed.
Definition writeListE := (writeList_nil, writeList_cons).
Lemma writeList1 i (x : S) : writeList i [:: x] = aput i x.
Proof. by rewrite writeList_cons bindmskip. Qed.
Lemma aput_writeListC i j (x : S) (xs : seq S) : i < j ->
aput i x >> writeList j xs = writeList j xs >> aput i x.
Proof.
elim: xs i j => [|h tl ih] i j ij /=; first by rewrite bindmskip bindretf.
rewrite -bindA aputC; last by left; rewrite lt_eqF.
by rewrite !bindA; bind_ext => -[]; rewrite ih// ltnW.
Qed.
Lemma writeListC i j (ys zs : seq S) : i + size ys <= j ->
writeList i ys >> writeList j zs = writeList j zs >> writeList i ys.
Proof.
elim: ys zs i j => [|h t ih] zs i j hyp /=; first by rewrite bindretf bindmskip.
rewrite writeList_cons aput_writeListC// bindA aput_writeListC; last first.
by rewrite (leq_trans _ hyp)//= -addSnnS ltn_addr.
rewrite -!bindA ih// addSn.
by rewrite /= addnS in hyp.
Qed.
Lemma aput_writeListCR i j (x : S) (xs : seq S) : j + size xs <= i ->
aput i x >> writeList j xs = writeList j xs >> aput i x.
Proof. by move=> jxsu; rewrite -writeList1 -[LHS]writeListC. Qed.
Lemma writeList_cat i (s1 s2 : seq S) :
writeList i (s1 ++ s2) = writeList i s1 >> writeList (i + size s1) s2.
Proof.
elim: s1 i => [|h t ih] i/=; first by rewrite addn0 bindretf.
by rewrite writeList_cons ih bindA addSnnS.
Qed.
Lemma writeList_rcons i (x : S) (xs : seq S) :
writeList i (rcons xs x) = writeList i xs >> aput (i + size xs) x.
Proof. by rewrite -cats1 writeList_cat /= -bindA bindmskip. Qed.
Definition writeL i (s : seq S) := writeList i s >> Ret (size s).
Definition write2L i '(s, t) := writeList i (s ++ t) >> Ret (size s, size t).
Lemma write2LE i a b D (f : nat * nat -> M D) :
write2L i (a, b) >>= f = writeList i (a ++ b) >> f (size a, size b).
Proof. by rewrite /write2L bindA bindretf. Qed.
Definition write3L i '(s, t, u) :=
writeList i (s ++ t ++ u) >> Ret (size s, size t, size u).
Lemma write3LE i x D (f : nat * nat * nat -> M D) :
write3L i x >>= f = let '(s, t, u) := x in
writeList i (s ++ t ++ u) >> f (size s, size t, size u).
Proof. by move: x => -[[x y] z]; rewrite /write3L bindA bindretf. Qed.
Lemma write_read i x : aput i x >> aget i = aput i x >> Ret x :> M _.
Proof. by rewrite -[RHS]aputget bindmret. Qed.
Lemma write_readC i j x : i != j ->
aput i x >> aget j = aget j >>= (fun v => aput i x >> Ret v) :> M _.
Proof. by move => ?; rewrite -aputgetC // bindmret. Qed.
(* see postulate introduce-read in IQsort.agda *)
Lemma writeListRet i x (s : seq S) :
writeList i (x :: s) >> Ret x = writeList i (x :: s) >> aget i.
Proof.
elim/last_ind: s x i => [|h t ih] /= x i.
by rewrite writeList1 write_read.
rewrite writeList_cons writeList_rcons 2![in RHS]bindA.
rewrite write_readC; last by rewrite gtn_eqF// ltn_addr.
rewrite -2![RHS]bindA -ih [RHS]bindA.
rewrite !bindA; bind_ext => _.
by under [in RHS]eq_bind do rewrite bindretf.
Qed.
Lemma writeList_aswap i x h (t : seq S) :
writeList i (rcons (h :: t) x) =
writeList i (rcons (x :: t) h) >> aswap i (i + size (rcons t h)).
Proof.
rewrite /aswap -!bindA writeList_rcons /=.
rewrite writeList_cons aput_writeListC// bindA.
rewrite writeList_cons aput_writeListC// writeList_rcons !bindA.
bind_ext => -[].
under [RHS] eq_bind do rewrite -bindA.
rewrite aputget -bindA size_rcons addSnnS.
under [RHS] eq_bind do rewrite -!bindA.
rewrite aputgetC; last by rewrite -addSnnS ltn_eqF// ltn_addr.
rewrite -!bindA aputget aputput aputC; last by right.
by rewrite bindA aputput.
Qed.
Lemma aput_writeList_rcons i x h (t : seq S) :
aput i x >> writeList i.+1 (rcons t h) =
aput i h >>
((writeList i.+1 t >> aput (i + (size t).+1) x) >>
aswap i (i + (size t).+1)).
Proof.
rewrite /aswap -!bindA writeList_rcons -bindA.
rewrite aput_writeListC// aput_writeListC// !bindA; bind_ext => -[].
under [RHS] eq_bind do rewrite -bindA.
rewrite aputgetC; last by rewrite gtn_eqF// -addSnnS ltn_addr.
rewrite -bindA aputget.
under [RHS] eq_bind do rewrite -!bindA.
rewrite aputget aputC; last by right.
by rewrite -!bindA aputput bindA aputput -addSnnS.
Qed.
Lemma writeList_ret_aget i x (s : seq S) (f : S -> M (nat * nat)%type):
writeList i (x :: s) >> Ret x >> f x =
writeList i (x :: s) >> aget i >>= f.
Proof.
rewrite writeListRet 2!bindA /= writeList_cons aput_writeListC// 2!bindA.
under [LHS] eq_bind do rewrite -bindA aputget.
by under [RHS] eq_bind do rewrite -bindA aputget.
Qed.
Fixpoint readList i (n : nat) : M (seq S) :=
if n isn't k.+1 then Ret [::] else liftM2 cons (aget i) (readList i.+1 k).
End write_read.
Section refin_writeList_aswap.
Context d (E : orderType d) (M : plusArrayMonad E nat).
(* eqn 13 in mu2020flops, postulate introduce-swap in IQSort.agda *)
Lemma refin_writeList_cons_aswap (i : nat) x (s : seq E) :
writeList i (x :: s) >> aswap (M := M) i (i + size s)
`<=`
qperm s >>= (fun s' => writeList i (rcons s' x)).
Proof.
elim/last_ind: s => [|t h ih] /=.
rewrite qperm_nil writeList1 bindretf addn0 aswapxx /= bindmskip writeList1.
exact: refin_refl.
rewrite bindA.
apply: (refin_trans _ (refin_bindr _ (qperm_refin_cons _ _ _))).
by rewrite bindretf -bindA -writeList_aswap; exact: refin_refl.
Qed.
(* eqn 11 in mu2020flops, introduce-swap in IPartl.agda *)
Lemma refin_writeList_rcons_aswap (i : nat) x (s : seq E) :
writeList i (rcons s x) >> aswap (M := M) i (i + size s)
`<=`
qperm s >>= (fun s' => writeList (M := M) i (x :: s')).
Proof.
case: s => [|h t] /=.
rewrite qperm_nil writeList1 bindretf addn0 aswapxx writeList1 bindmskip.
exact: refin_refl.
rewrite writeList_cons bindA writeList_rcons addSnnS -aput_writeList_rcons.
apply: (refin_trans _ (refin_bindr _ (qperm_refin_rcons _ _ _))).
by rewrite bindretf; exact: refin_refl.
Qed.
(* bottom of the page 11, used in the proof of lemma 10 *)
Lemma refin_writeList_rcons_cat_aswap (i : nat) x (ys zs : seq E) :
writeList i (rcons (ys ++ zs) x) >>
aswap (M := M) (i + size ys) (i + size (ys ++ zs))
`<=`
qperm zs >>= (fun zs' => writeList i (ys ++ x :: zs')).
Proof.
under [in X in _ `<=` X]eq_bind do rewrite writeList_cat.
rewrite (plus_commute (qperm zs))//.
rewrite rcons_cat writeList_cat bindA.
apply: refin_bindl => -[]; rewrite size_cat/= addnA.
exact: refin_writeList_rcons_aswap.
Qed.
End refin_writeList_aswap.