-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathstate_lib.v
691 lines (617 loc) · 23.1 KB
/
state_lib.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
(* monae: Monadic equational reasoning in Coq *)
(* Copyright (C) 2020 monae authors, license: LGPL-2.1-or-later *)
From mathcomp Require Import all_ssreflect.
From mathcomp Require boolp.
Require Import preamble.
From HB Require Import structures.
Require Import hierarchy monad_lib fail_lib.
(******************************************************************************)
(* Definitions and lemmas about state monads *)
(* *)
(* overwrite s a := put s >> Ret s *)
(* protect n := get >>= (fun x => n >>= overwrite x) *)
(* putpermsC == perms is independent of the state and so *)
(* commutes with put *)
(* nondetState_isNondet m == m is a computation of the nondetStateMonad that *)
(* can be written with the syntax of the *)
(* the nondeterministic monad *)
(* scanlM == see section 4.1, mu2019tr3 *)
(* scanlM_of_scanl == see theorem 4.1, mu2019tr3 *)
(* theorem44 == see mu2019tr3 *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope monae_scope.
Lemma putgetput (S : UU0) {M : stateMonad S} x {B} (k : _ -> M B) :
put x >> get >>= (fun x' => k x') = put x >> k x :> M _.
Proof. by rewrite putget bindA bindretf. Qed.
Definition overwrite {A S} {M : stateMonad S} s a : M A :=
put s >> Ret a.
Definition protect {A S} {M : stateMonad S} (n : M A) :=
get >>= (fun ini => n >>= overwrite ini).
Lemma protect_put_ret {A S : UU0} {M : stateMonad S} (s : S) (a : A) :
protect (put s >> Ret a) = Ret a :> M _.
Proof.
rewrite /protect.
under eq_bind do rewrite bindA bindretf.
rewrite /overwrite.
under eq_bind do rewrite -bindA putput.
by rewrite -bindA getput bindskipf.
Qed.
Example test_nonce0 (M : stateMonad nat) : M nat :=
get >>= (fun s => put s.+1 >> Ret s).
(*Reset test_nonce0.
Fail Check test_nonce0.*)
Section stateloop_examples.
Variable (M : loopStateMonad nat).
Let example min max : M unit := foreach max min (fun i : nat => get >> Ret tt).
Let sum n : M unit := foreach n O
(fun i : nat => get >>= (fun z => put (z + i))).
Lemma sum_test n :
sum n = get >>= (fun m => put (m + sumn (iota 0 n))).
Proof.
elim: n => [|n ih].
rewrite /sum.
rewrite loop0.
rewrite (_ : sumn (iota 0 0) = 0) //.
rewrite -[LHS]bindskipf.
rewrite -getput.
rewrite bindA.
bind_ext => a.
rewrite addn0.
rewrite -[RHS]bindmret.
bind_ext.
by case.
rewrite {1}/sum -add1n loop1 bindA; bind_ext => m.
rewrite -/(sum n) {}ih -bindA putget bindA bindretf putput.
congr put.
by rewrite add0n (addnC 1) iotaD /= sumn_cat /= add0n addn0 /= addnAC addnA.
Qed.
End stateloop_examples.
Lemma getput_prepend (S : UU0) (M : nondetStateMonad S) A (m : M A) :
m = get >>= (fun x => put x >> m).
Proof. by rewrite -{2}(bindskipf m) -bindA getput 2!bindskipf. Qed.
Section state_commute.
Variables (S : Type) (M : nondetStateMonad S).
Lemma puttselectC (x : S) A (s : seq A) B (f : _ -> M B) :
put x >> (tselect s >>= f) = tselect s >>= (fun rs => put x >> f rs).
Proof.
elim: s f => [|h t IH] f.
by rewrite tselect_nil 2!bindfailf bindmfail.
case: t IH f => [|h' t] IH f.
by rewrite tselect1 !bindretf.
rewrite tselect_cons // => H.
rewrite [in LHS]alt_bindDl [in RHS]alt_bindDl alt_bindDr.
congr (_ [~] _); first by rewrite 2!bindretf.
rewrite 2!bindA IH; bind_ext => y; by rewrite !bindretf.
Qed.
Lemma putselectC (x : S) A (s : seq A) B (f : A * (seq A) -> M B) :
put x >> (select s >>= f) = select s >>= (fun rs => put x >> f rs).
Proof.
rewrite selectE {1}fmapE.
under eq_bind do rewrite bindA.
rewrite puttselectC [in RHS]fmapE bindA.
by bind_ext => x0; rewrite 2!bindretf.
Qed.
Lemma gettselectC A (s : seq A) B (f : _ -> _ -> M B) :
(do ini <- get; do rs <- tselect s; f rs ini =
do rs <- tselect s; do ini <- get; f rs ini)%Do.
Proof.
elim: s f => [|h t IH] f.
by rewrite tselect_nil bindfailf; under eq_bind do rewrite bindfailf; rewrite bindmfail.
case: t IH f => [|h' t] IH f.
by rewrite tselect1 bindretf; under eq_bind do rewrite bindretf.
rewrite tselect_cons // => H.
rewrite [tselect _]lock.
under eq_bind do rewrite alt_bindDl.
rewrite [in RHS]alt_bindDl alt_bindDr.
congr (_ [~] _).
by rewrite bindretf; bind_ext => ?; rewrite bindretf.
rewrite -lock.
transitivity (do x0 <- tselect (h' :: t); do x <- get;
f (x0.1, Tuple (fail_lib.tselect_cons_statement_obligation_2 h H x0)) x)%Do.
rewrite -IH; bind_ext => x.
by rewrite bindA; under eq_bind do rewrite bindretf.
by rewrite bindA; bind_ext => y; rewrite bindretf.
Qed.
Lemma putpermsC (x : S) A (s : seq A) B (f : _ -> M B) :
put x >> (perms s >>= f) = perms s >>= (fun rs => put x >> f rs).
Proof.
move Hn : (size s) => n.
elim: n s Hn x f => [|n IH] s Hn x f.
by case: s Hn => // _; rewrite permsE 2!bindretf.
case: s Hn => // h t [Hn].
rewrite tpermsE 2!bindA puttselectC; bind_ext; case=> a b.
rewrite 2!bindA.
have bn : size b = n by rewrite size_tuple.
rewrite IH //.
under eq_bind do rewrite bindretf.
by under [RHS]eq_bind do rewrite bindretf.
Qed.
Lemma getpermsC A (s : seq A) B (f : _ -> _ -> M B) :
(get >>= (fun ini => perms s >>= f^~ ini) =
perms s >>= (fun rs => get >>= f rs))%Do.
Proof.
move Hn : (size s) => n.
elim: n s Hn f => [|n IH] s Hn f.
case: s Hn => // _; rewrite permsE.
by rewrite bindretf; under eq_bind do rewrite bindretf.
case: s Hn => // h t [Hn].
rewrite tpermsE bindA.
transitivity (do x <- tselect (h :: t); do ini <- get; do rs <- perms x.2;
f (x.1 :: rs) ini)%Do; last first.
bind_ext => x.
rewrite IH ?size_tuple // bindA.
by under [RHS]eq_bind do rewrite bindretf.
rewrite -gettselectC.
bind_ext => x.
rewrite bindA; bind_ext => rs.
rewrite bindA.
by under eq_bind do rewrite bindretf.
Qed.
End state_commute.
Definition nondetState_isNondet S (M : nondetStateMonad S) A (n : M A) :=
{m | nondetSem m = n}.
Lemma nondetState_commute S (M : nondetStateMonad S) A (m : M A) B (n : M B) C
(f : A -> B -> M C) : nondetState_isNondet m -> commute m n f.
Proof.
case => x.
elim: x m n f => [{}A a m n f <-| B0 {}A n0 H0 n1 H1 m n2 f <- |
A0 m n f <- | A0 n0 H0 n1 H1 m n2 f <-].
- rewrite /commute bindretf.
by under [RHS]eq_bind do rewrite bindretf.
- rewrite /commute /= !bindA.
transitivity (do x <- nondetSem n0; do y <- n2; nondetSem (n1 x) >>= f^~ y)%Do.
bind_ext => s.
by rewrite (H1 s).
rewrite H0 //.
bind_ext => b.
by rewrite bindA.
- rewrite /commute /= bindfailf.
transitivity (n >> fail : M C); first by rewrite bindmfail.
bind_ext => b.
by rewrite bindfailf.
- rewrite /commute /= alt_bindDl.
transitivity (do y <- n2; nondetSem n0 >>= f^~ y [~]
nondetSem n1 >>= f^~ y)%Do; last first.
bind_ext => a.
by rewrite alt_bindDl.
by rewrite alt_bindDr H0 // H1.
Qed.
Arguments nondetState_commute {S M A} m {B} n {C} f.
Lemma select_isNondet S (M : nondetStateMonad S) A (s : seq A) :
nondetState_isNondet (select s : M _).
Proof.
elim: s => [/= | u v [x /= <-]]; first by exists (@ndFail _).
by exists (ndAlt (ndRet (u, v)) (ndBind x (fun x => ndRet (x.1, u :: x.2)))).
Qed.
#[global] Hint Extern 0 (nondetState_isNondet (select _)) =>
solve[exact: select_isNondet] : core.
Lemma unfoldM_isNondet S (M : nondetStateMonad S) A B
(f : seq B -> M (A * seq B)%type) :
(forall s, nondetState_isNondet (f s)) -> bassert_size f ->
forall s, nondetState_isNondet (unfoldM (@well_founded_size B) (@nilp _) f s).
Proof.
move=> Hf size_f s.
apply/boolp.constructive_indefinite_description.
move: s; apply: (well_founded_induction (@well_founded_size _)) => s IH.
have {}IH : forall x, size x < size s ->
{ m | nondetSem m = unfoldM (@well_founded_size B) (@nilp _) f x}.
move=> x xs; exact/boolp.constructive_indefinite_description/IH.
case: s IH => [|h t] IH.
rewrite unfoldME //=; by exists (ndRet [::]).
rewrite unfoldME //.
rewrite (_ : nilp _ = false) //.
case: (Hf (h :: t)) => x Hx.
rewrite -Hx.
set g := fun y => match Bool.bool_dec (size y < size (h :: t)) true with
| left H => let: exist x _ := IH _ H in x
| _ => ndRet [::]
end.
refine (ex_intro _ (ndBind x (fun x => ndBind (g x.2) (@ndRet _ \o cons x.1 ))) _).
rewrite [in LHS]/=.
rewrite Hx size_f /bassert !bindA.
bind_ext => -[x1 x2].
case: assertPn; rewrite ltnS => b1b2; last by rewrite !bindfailf.
rewrite !bindretf /g/=.
case: Bool.bool_dec => // x2t.
by case: (IH x2) => // x0 <-; rewrite fmapE.
Qed.
Section loop.
Variables (A S : UU0) (M : stateMonad S) (op : S -> A -> S).
Local Open Scope mprog.
Definition opmul x m : M _ :=
get >>= fun st => let st' := op st x in fmap (cons st') (put st' >> m).
Definition scanlM s xs : M (seq S) :=
let mul x m := opmul x m in put s >> foldr mul (Ret [::]) xs.
Lemma scanlM_nil s : scanlM s [::] = put s >> Ret [::].
Proof. by []. Qed.
Let scanlM_of_scanl_helper s
(ms : M S) (mu mu' : M unit) (m : M (seq S)) (f : S -> M unit) :
(do x <- ms; mu >> (do xs <- fmap (cons s) (mu' >> m); f x >> Ret xs) =
fmap (cons s) (do x <- ms; mu >> mu' >> (do xs <- m; f x >> Ret xs)))%Do.
Proof.
rewrite [in RHS]fmapE !bindA.
under [RHS]eq_bind do rewrite bindA.
bind_ext => s'.
rewrite !bindA; bind_ext; case.
rewrite bind_fmap bindA; bind_ext; case.
by under [RHS]eq_bind do rewrite bindA bindretf.
Qed.
Lemma scanlM_of_scanl s xs : Ret (scanl op s xs) = protect (scanlM s xs).
Proof.
elim: xs s => [/=|x xs IH] s.
by rewrite scanlM_nil protect_put_ret.
rewrite /scanlM [in RHS]/=.
set mul := fun (a : A) m => _.
under [RHS]eq_bind do rewrite -!bindA.
(* TODO(rei): tactic for nested function bodies? *)
transitivity (do y <- get; (put s >> get) >>= fun z =>
do a <- fmap (cons (op z x)) (put (op z x) >> foldr mul (Ret [::]) xs);
put y >> Ret a)%Do; last first.
by under [LHS]eq_bind do rewrite -!bindA.
under eq_bind do rewrite putget bindA bindretf.
rewrite scanlM_of_scanl_helper.
transitivity (fmap (cons (op s x)) (do y <- get; put (op s x) >>
(do a <- foldr mul (Ret [::]) xs; put y >> Ret a)))%Do; last first.
by congr (fmap _ _); under [RHS]eq_bind do rewrite putput.
transitivity (fmap (cons (op s x)) (protect (scanlM (op s x) xs))); last first.
by congr (fmap _ _); under eq_bind do rewrite -bindA.
by rewrite -IH fmapE bindretf.
Qed.
End loop.
Arguments scanlM {A S M}.
Section section43.
Variables (S : UU0) (M : nondetStateMonad S).
Variables (A : UU0) (op : S -> A -> S) (ok : pred S).
Lemma assert_all_scanl s (xs : seq A) :
assert (all ok \o scanl op s) xs =
protect (scanlM op s xs >>=
(fun ys => guard (all ok ys) >> Ret xs)) :> M _.
Proof.
rewrite assertE guardsC; last exact: bindmfail.
transitivity (protect (scanlM op s xs) >>=
(fun ys => guard (all ok ys) >> Ret xs) : M _).
by rewrite -!bindA -scanlM_of_scanl bindA !bindretf assertE.
rewrite bindA [in RHS]/protect.
bind_ext => st.
rewrite 2!bindA; bind_ext => xs'.
rewrite [in RHS]bindA [in RHS]guardsC; last exact: bindmfail.
rewrite bindA bindretf.
rewrite /overwrite bindA bindretf bindA; bind_ext; case.
by rewrite bindretf assertE.
Qed.
Local Open Scope mprog.
Lemma put_foldr st x xs :
put (op st x) >> (do x1 <- foldr (opmul op) (Ret [::]) xs;
guard (all ok x1) >> guard (ok (op st x)))%Do =
guard (ok (op st x)) >> (put (op st x) >>
(do ys <- foldr (opmul op) (Ret [::]) xs; guard (all ok ys))%Do) :> M _.
Proof.
elim: xs x => [x|h t _ x].
rewrite /= bindretf /= guardT /= bindskipf /= bindretf.
rewrite (_ : guard (_ _ [::]) = skip) //= ?guardT //.
rewrite bindmskip; case: guardPn => H.
- by rewrite bindskipf bindmskip.
- by rewrite bindmfail bindfailf.
rewrite /= !bindA.
transitivity (put (op st x) >>
(do x0 <- get; do x1 <- let st' := op x0 h in
fmap (cons st') (put st' >> foldr (opmul op) (Ret [::]) t);
guard (ok (op st x)) >> guard (all ok x1))%Do : M _).
bind_ext; case.
bind_ext => st'.
bind_ext => s.
by rewrite -guard_and andbC guard_and.
rewrite guardsC; last exact: bindmfail.
rewrite !bindA.
bind_ext; case.
bind_ext => st'.
rewrite !bindA.
bind_ext => s.
rewrite guardsC //; exact: bindmfail.
Qed.
Let B := A.
Let res := @cons A.
Definition opdot (a : A) (m : M (seq B)) : M (seq B) :=
get >>= (fun st => guard (ok (op st a)) >> put (op st a) >> fmap (res a) m).
Lemma theorem44 (xs : seq A) :
foldr (opmul op) (Ret [::]) xs >>=
(fun ys => guard (all ok ys) >> Ret xs) = foldr opdot (Ret [::]) xs.
Proof.
elim: xs => [|x xs IH]; first by rewrite /= bindretf /= guardT bindskipf.
rewrite [in LHS]/=.
rewrite {1}/opmul.
rewrite {1}bindA.
transitivity (get >>= (fun x0 =>
put (op x0 x) >> foldr (opmul op) (Ret [::]) xs >>= (fun ys =>
guard (all ok (op x0 x :: ys))) >> Ret (x :: xs)) : M _).
bind_ext => st.
by rewrite bind_fmap !bindA.
transitivity (get >>= (fun x0 =>
put (op x0 x) >> foldr (opmul op) (Ret [::]) xs >>= (fun ys =>
guard (all ok ys) >> guard (ok (op x0 x))) >> Ret (x :: xs)) : M _).
bind_ext => st.
rewrite !bindA.
bind_ext; case.
bind_ext => ys.
rewrite -guard_and.
congr (guard _ >> _).
by rewrite -cat1s all_cat andbC all_seq1.
transitivity (get >>= (fun st => guard (ok (op st x)) >>
put (op st x) >> foldr (opmul op) (Ret [::]) xs >>= (fun ys =>
guard (all ok ys)) >> Ret (x :: xs)) : M _).
bind_ext => st.
rewrite -!bindA.
congr (_ >> _).
rewrite !bindA.
by rewrite put_foldr.
transitivity (get >>= (fun st => guard (ok (op st x)) >>
put (op st x) >>
fmap (cons x) (foldr (opmul op) (Ret [::]) xs >>= (fun ys =>
guard (all ok ys)) >> Ret xs)) : M _).
bind_ext => st.
rewrite !bindA.
bind_ext; case.
bind_ext; case.
rewrite !fmap_bind.
bind_ext => s.
rewrite fcompE fmap_bind /=.
bind_ext; case.
by rewrite fcompE fmapE bindretf.
by rewrite [in RHS]/= -IH /opdot !bindA.
Qed.
End section43.
(* TODO: move? *)
Definition intersect {A : eqType} (s t : seq A) : seq A := filter (mem s) t.
Lemma nilp_intersect (A : eqType) (s t : seq A) :
nilp (intersect s t) = ~~ has (mem s) t.
Proof. by rewrite /intersect /nilp size_filter has_count lt0n negbK. Qed.
Definition seq_disjoint {A : eqType} : pred (Squaring (seq A)) :=
(@nilp _) \o uncurry intersect.
Lemma intersect0s (A : eqType) (s : seq A) : intersect [::] s = [::].
Proof. by elim: s. Qed.
Definition promotable (A : UU0) (p : pred (seq A)) (q : pred (seq A * seq A)) :=
forall s t, p s -> p t -> p (s ++ t) = q (s, t).
Lemma segment_closed_suffix (A : UU0) (p : segment_closed.t A) s :
~~ p s -> forall t, ~~ p (s ++ t).
Proof. move=> ps t; apply: contra ps; by case/segment_closed.H. Qed.
Lemma segment_closed_prefix (A : UU0) (p : segment_closed.t A) s :
~~ p s -> forall t, ~~ p (t ++ s).
Proof. move=> ps t; apply: contra ps; by case/segment_closed.H. Qed.
(* assert p distributes over concatenation *)
Local Open Scope mprog.
Definition promote_assert (M : failMonad) (A : UU0)
(p : pred (seq A)) (q : pred (seq A * seq A)) :=
(bassert p) \o (fmap ucat) \o mpair =
(fmap ucat) \o (bassert q) \o mpair \o (bassert p)^`2 :> (_ -> M _).
Local Close Scope mprog.
Lemma promote_assert_sufficient_condition (M : failMonad) (A : UU0) :
BindLaws.right_zero (@bind M) (@fail _) ->
forall (p : segment_closed.t A) q, promotable p q ->
promote_assert M p q.
Proof.
move=> right_z p q promotable_pq.
rewrite /promote_assert; apply: boolp.funext => -[x1 x2].
rewrite 3![in RHS]compE [in RHS]fmapE.
rewrite 2![in LHS]compE {1}/bassert [in LHS]bind_fmap !bindA.
bind_ext => s.
rewrite bindA; under eq_bind do rewrite bindretf.
case: assertPn => ps; last first.
rewrite bindfailf.
With (idtac) Open (X in _ >>= X).
rewrite /assert; unlock => /=.
rewrite (negbTE (segment_closed_suffix ps x)) guardF bindfailf.
reflexivity.
by rewrite right_z.
rewrite bindretf bindA /=.
under [RHS]eq_bind do rewrite bindretf.
rewrite bindA.
bind_ext => t.
case: (assertPn _ _ t) => pt; last first.
rewrite bindfailf assertE (negbTE (segment_closed_prefix pt s)) guardF.
by rewrite bindfailf.
by rewrite bindretf /= 2!assertE promotable_pq //= bindA bindretf.
Qed.
Section examples_promotable_segment_closed.
Lemma promotable_uniq_seq_disjoint A : promotable (@uniq A) seq_disjoint.
Proof.
move=> s t ps pt.
by rewrite cat_uniq ps pt /= andbT -nilp_intersect.
Qed.
Local Obligation Tactic := idtac.
Program Definition uniq_is_segment_closed (A : eqType) : segment_closed.t A :=
@segment_closed.mk _ (@uniq A) _.
Next Obligation. by move=> A a b; rewrite cat_uniq => /and3P[]. Qed.
(* is a contiguous segment of the enumeration *)
(* TODO(rei): generalize to any enumeration *)
Definition is_iota : pred (seq nat) := [pred x | x == iota (head O x) (size x) ].
Lemma is_iota_head_last s : is_iota s -> 0 < size s -> head 0 s + size s = (last 0 s).+1.
elim: s => //= a [_ /=|c d IH].
by rewrite addn1.
rewrite /is_iota /= => /eqP[] ?; subst c => Hd _.
rewrite /= in IH.
by rewrite -IH // -?addSnnS // /is_iota /= -Hd.
Qed.
(* predicate "are adjacent segments" *)
Definition are_adjacent : pred (seq nat * seq nat)%type :=
[pred xy | [|| xy.1 == [::] , xy.2 == [::] | (last O xy.1).+1 == head O xy.2]].
Lemma promotable_enum : promotable is_iota are_adjacent.
Proof.
move=> s t Hs Ht.
rewrite /is_iota /= size_cat iotaD.
case/boolP : (nilp s) => [/nilP ->{Hs s} /=|s0]; first by rewrite addn0 /are_adjacent.
rewrite /nilp -lt0n in s0.
have -> : head 0 (s ++ t) = head 0 s by rewrite -nth0 nth_cat sub0n s0.
rewrite -(eqP Hs) /are_adjacent /= -size_eq0 -(negbK (size s == _)) -lt0n s0 /=.
rewrite eqseq_cat // eqxx /=.
case/boolP : (nilp t) => [/nilP {Ht} ->{t} //|t0].
rewrite /nilp -lt0n in t0.
rewrite -(size_eq0 t) -(negbK (size t == _)) -lt0n t0 /=.
case: t Ht t0 => // a b Hab _.
rewrite [head _ (_ :: _)]/=.
rewrite is_iota_head_last //= eqseq_cons eq_sym andb_idr // => /eqP Ha.
move: Hab.
by rewrite /is_iota /= => /eqP[] {1}->; rewrite -Ha.
Qed.
Local Obligation Tactic := idtac.
Program Definition is_iota_is_segment_closed : segment_closed.t nat :=
@segment_closed.mk _ is_iota _.
Next Obligation.
move=> a b.
rewrite /is_iota /= /= size_cat => /eqP Hab.
apply/andP; rewrite -eqseq_cat ?size_iota //; apply/eqP.
case/boolP : (nilp a) => [/nilP a0|a0]; first by move: Hab; rewrite a0.
case/boolP : (nilp b) => [/nilP b0|b0].
by move: Hab; rewrite b0 /= !cats0 addn0.
have -> : head 0 b = head 0 a + size a.
move/(congr1 (fun x => nth 0 x (size a))) : Hab.
rewrite nth_cat ltnn subnn nth0 => ->; rewrite -nth0 nth_cat lt0n.
by rewrite a0 nth0 nth_iota // -{1}(addn0 (size a)) ltn_add2l lt0n.
suff <- : head 0 (a ++ b) = head 0 a by rewrite -iotaD.
by rewrite -nth0 nth_cat lt0n a0.
Qed.
End examples_promotable_segment_closed.
Section properties_of_Symbols.
Variables (A : eqType) (M : failFreshMonad A).
Lemma symbolsE : symbols = (fun n => sequence (nseq n fresh)) :> (_ -> M _).
Proof. by case: M => m [? ? []]. Qed.
Lemma symbols0 : symbols 0 = Ret [::] :> M _.
Proof. by rewrite symbolsE. Qed.
Lemma symbolsS n : symbols n.+1 =
(do x <- fresh ; do xs <- symbols n : M _; Ret (x :: xs))%Do.
Proof. by rewrite symbolsE. Qed.
Lemma symbols_prop1 :
symbols \o const 1 = (M # wrap) \o const fresh :> (A -> M _).
Proof.
apply: boolp.funext => n.
transitivity (@symbols _ M 1) => //.
rewrite symbolsE sequence_cons sequence_nil.
under eq_bind do rewrite bindretf.
by rewrite compE [in RHS]fmapE.
Qed.
Local Open Scope mprog.
Lemma symbols_prop2 :
symbols \o uaddn = (fmap ucat) \o mpair \o (symbols : _ -> M _)^`2.
Proof.
apply: boolp.funext => -[n1 n2].
elim: n1 => [|n1 IH].
rewrite [in LHS]compE uaddnE add0n.
rewrite compE [in X in _ = _ X]/= squaringE symbols0.
rewrite compE [in RHS]fmapE bindA bindretf.
rewrite -fmapE fmap_bind.
Open (X in _ >>= X).
rewrite fcompE fmapE bindretf /=; reflexivity.
by rewrite bindmret.
rewrite compE uaddnE addSn symbolsS -uaddnE -(compE symbols) {}IH.
rewrite [in RHS]compE [in X in _ = _ X]/= squaringE symbolsS.
rewrite [in RHS]compE -/(fmap _ _) fmap_bind bindA; bind_ext => a.
rewrite 2![in LHS]compE [in LHS]fmap_bind [in LHS]bindA [in RHS]bindA.
bind_ext => s.
rewrite [in RHS]bindretf [in RHS]fcompE [in RHS]fmap_bind.
rewrite [in LHS]fcompE [in LHS]bind_fmap [in LHS]bindA.
under eq_bind do rewrite bindretf.
by under [RHS]eq_bind do rewrite fcompE fmapE bindretf.
Qed.
End properties_of_Symbols.
Definition swap {S : eqType} {I : eqType} {M : arrayMonad S I} (i j : I) : M unit :=
(do x <- aget i ;
do y <- aget j ;
aput i y >>
aput j x)%Do.
Section monadarray_example.
Local Open Scope do_notation.
Variable M : arrayMonad nat bool.
Definition does_swap (m : M unit) :=
(do x <- aget false ;
do y <- aget true ;
m >>
do x' <- aget false ;
do y' <- aget true ;
Ret ((x == y') && (y == x'))).
Lemma swapP (m : M unit) :
does_swap (swap false true) = swap false true >> Ret true.
Proof.
rewrite /swap /does_swap.
transitivity (
do x <- aget false;
do y <- aget true;
do x0 <- aget false;
(do y0 <- aget true; aput false y0 >> aput true x0) >>
(do x' <- aget false; do y' <- aget true; Ret ((x == y') && (y == x'))) : M _).
by under eq_bind do under eq_bind do rewrite bindA.
rewrite agetC.
under eq_bind do rewrite agetget.
transitivity (
do x <- aget true;
do s <- aget false;
do y0 <- aget true; (aput false y0 >> aput true s) >>
(do x' <- aget false; do y' <- aget true; Ret ((s == y') && (x == x'))) : M _).
by under eq_bind do under eq_bind do rewrite bindA.
rewrite agetC.
under eq_bind do rewrite agetget.
transitivity (
do x <- aget false;
do s <- aget true;
(aput false s >> (aput true x >>
do y' <- aget true; do x' <- aget false; Ret ((x == y') && (s == x')))) : M _).
bind_ext => x. bind_ext => y. rewrite bindA. bind_ext; case.
by under eq_bind do rewrite agetC.
transitivity (
do x <- aget false;
do s <- aget true;
(aput false s >> (aput true x >>
do x' <- aget false; Ret ((x == x) && (s == x')))) : M _).
bind_ext => x.
bind_ext => y.
bind_ext; case.
by rewrite -bindA aputget.
transitivity (
do x <- aget false;
do s <- aget true;
(aput true x >> aput false s >> (do x' <- aget false; Ret ((x == x) && (s == x')))) : M _).
bind_ext => x.
bind_ext => y.
by rewrite -bindA aputC //=; left.
transitivity (
do x <- aget false;
do s <- aget true;
(aput true x >> aput false s) >> Ret ((x == x) && (s == s)) : M _).
bind_ext => x.
bind_ext => y.
rewrite 2!bindA.
bind_ext; case.
by rewrite -bindA aputget.
transitivity (
do x <- aget false;
do s <- aget true;
(aput true x >> aput false s) >> Ret true : M _).
bind_ext => x.
bind_ext => y.
by rewrite 2!eqxx.
rewrite bindA.
bind_ext => x.
rewrite bindA.
bind_ext => y.
by rewrite aputC //; left.
Qed.
End monadarray_example.
Section tick_fusion.
Context {M : stateMonad nat}.
Definition tick : M unit := get >>= (put \o succn).
Lemma tick_fusion n : rep n tick = get >>= (put \o addn n).
Proof.
elim: n => [|n ih]; first by rewrite /= -getput.
rewrite /= /tick ih.
rewrite bindA.
bind_ext => m.
rewrite -bindA.
rewrite putget.
rewrite bindA.
rewrite bindretf.
rewrite putput.
by rewrite /= addSnnS.
Qed.
End tick_fusion.