forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspaces-divisors.tex
2845 lines (2497 loc) · 104 KB
/
spaces-divisors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Divisors on Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we study divisors on algebraic spaces and related topics.
A basic reference for algebraic spaces is \cite{Kn}.
\section{Associated and weakly associated points}
\label{section-associated}
\noindent
In the case of schemes we have introduced two competing notions
of associated points. Namely, the usual associated points
(Divisors, Section \ref{divisors-section-associated})
and the weakly associated points
(Divisors, Section \ref{divisors-section-weakly-associated}).
For a general algebraic space the notion of an associated point
is basically useless and we don't even bother to introduce it.
If the algebraic space is locally Noetherian, then we allow ourselves
to use the phrase ``associated point'' instead of
``weakly associated point'' as the notions are the same for
Noetherian schemes (Divisors, Lemma \ref{divisors-lemma-ass-weakly-ass}).
Before we make our definition, we need a lemma.
\begin{lemma}
\label{lemma-associated}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in |X|$. The following are equivalent
\begin{enumerate}
\item for some \'etale morphism $f : U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$, the point $u$ is weakly associated
to $f^*\mathcal{F}$,
\item for every \'etale morphism $f : U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$, the point $u$ is weakly associated
to $f^*\mathcal{F}$,
\item the maximal ideal of $\mathcal{O}_{X, \overline{x}}$
is a weakly associated prime of the stalk $\mathcal{F}_{\overline{x}}$.
\end{enumerate}
If $X$ is locally Noetherian, then these are also equivalent to
\begin{enumerate}
\item[(4)] for some \'etale morphism $f : U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$, the point $u$ is associated
to $f^*\mathcal{F}$,
\item[(5)] for every \'etale morphism $f : U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$, the point $u$ is associated
to $f^*\mathcal{F}$,
\item[(6)] the maximal ideal of $\mathcal{O}_{X, \overline{x}}$
is an associated prime of the stalk $\mathcal{F}_{\overline{x}}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose a scheme $U$ with a point $u$ and an \'etale morphism
$f : U \to X$ mapping $u$ to $x$. Lift $\overline{x}$ to a geometric
point of $U$ over $u$. Recall that
$\mathcal{O}_{X, \overline{x}} = \mathcal{O}_{U, u}^{sh}$
where the strict henselization is with respect to our chosen
lift of $\overline{x}$, see
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-describe-etale-local-ring}.
Finally, we have
$$
\mathcal{F}_{\overline{x}} =
(f^*\mathcal{F})_u \otimes_{\mathcal{O}_{U, u}}
\mathcal{O}_{X, \overline{x}} =
(f^*\mathcal{F})_u \otimes_{\mathcal{O}_{U, u}}
\mathcal{O}_{U, u}^{sh}
$$
by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-stalk-quasi-coherent}.
Hence the equivalence of (1), (2), and (3) follows from
More on Flatness, Lemma \ref{flat-lemma-weakly-associated-henselization}.
If $X$ is locally Noetherian, then
any $U$ as above is locally Noetherian,
hence we see that (1), resp.\ (2) are equivalent to (4), resp.\ (5) by
Divisors, Lemma \ref{divisors-lemma-ass-weakly-ass}.
On the other hand, in the locally Noetherian case the
local ring $\mathcal{O}_{X, \overline{x}}$ is Noetherian too
(Properties of Spaces, Lemma
\ref{spaces-properties-lemma-Noetherian-local-ring-Noetherian}).
Hence the equivalence of (3) and (6) by the same lemma
(or by Algebra, Lemma \ref{algebra-lemma-ass-weakly-ass}).
\end{proof}
\begin{definition}
\label{definition-weakly-associated}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $x \in |X|$.
\begin{enumerate}
\item We say $x$ is {\it weakly associated} to $\mathcal{F}$
if the equivalent conditions (1), (2), and (3) of
Lemma \ref{lemma-associated} are satisfied.
\item We denote $\text{WeakAss}(\mathcal{F})$ the set of weakly associated
points of $\mathcal{F}$.
\item The {\it weakly associated points of $X$} are the weakly associated
points of $\mathcal{O}_X$.
\end{enumerate}
If $X$ is locally Noetherian we will say
{\it $x$ is associated to $\mathcal{F}$}
if and only if $x$ is weakly associated to $\mathcal{F}$ and we set
$\text{Ass}(\mathcal{F}) = \text{WeakAss}(\mathcal{F})$.
Finally (still assuming $X$ is locally Noetherian),
we will say {\it $x$ is an associated point of $X$} if and only if
$x$ is a weakly associated point of $X$.
\end{definition}
\noindent
At this point we can prove the obligatory lemmas.
\begin{lemma}
\label{lemma-weakly-ass-support}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\text{WeakAss}(\mathcal{F}) \subset \text{Supp}(\mathcal{F})$.
\end{lemma}
\begin{proof}
This is immediate from the definitions. The support of an abelian sheaf
on $X$ is defined in Properties of Spaces, Definition
\ref{spaces-properties-definition-support}.
\end{proof}
\begin{lemma}
\label{lemma-ses-weakly-ass}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
be a short exact sequence of quasi-coherent sheaves on $X$.
Then
$\text{WeakAss}(\mathcal{F}_2) \subset
\text{WeakAss}(\mathcal{F}_1) \cup \text{WeakAss}(\mathcal{F}_3)$
and
$\text{WeakAss}(\mathcal{F}_1) \subset \text{WeakAss}(\mathcal{F}_2)$.
\end{lemma}
\begin{proof}
For every geometric point $\overline{x} \in X$
the sequence of stalks
$0 \to \mathcal{F}_{1, \overline{x}} \to
\mathcal{F}_{2, \overline{x}} \to
\mathcal{F}_{3, \overline{x}} \to 0$
is a short exact sequence of $\mathcal{O}_{X, \overline{x}}$-modules.
Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-weakly-ass}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-ass-zero}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then
$$
\mathcal{F} = (0) \Leftrightarrow \text{WeakAss}(\mathcal{F}) = \emptyset
$$
\end{lemma}
\begin{proof}
Choose a scheme $U$ and a surjective \'etale morphism $f : U \to X$.
Then $\mathcal{F}$ is zero if and only if $f^*\mathcal{F}$ is zero.
Hence the lemma follows from the definition and the lemma in the
case of schemes, see
Divisors, Lemma \ref{divisors-lemma-weakly-ass-zero}.
\end{proof}
\begin{lemma}
\label{lemma-minimal-support-in-weakly-ass}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in |X|$. If
\begin{enumerate}
\item $x \in \text{Supp}(\mathcal{F})$
\item $x$ is a codimension $0$ point of $X$
(Properties of Spaces, Definition
\ref{spaces-properties-definition-dimension-local-ring}).
\end{enumerate}
Then $x \in \text{WeakAss}(\mathcal{F})$. If $\mathcal{F}$
is a finite type $\mathcal{O}_X$-module with scheme theoretic support $Z$
(Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-scheme-theoretic-support})
and $x$ is a codimension $0$ point of $Z$, then
$x \in \text{WeakAss}(\mathcal{F})$.
\end{lemma}
\begin{proof}
Since $x \in \text{Supp}(\mathcal{F})$ the stalk
$\mathcal{F}_{\overline{x}}$ is not zero. Hence
$\text{WeakAss}(\mathcal{F}_{\overline{x}})$
is nonempty by
Algebra, Lemma \ref{algebra-lemma-weakly-ass-zero}.
On the other hand, the spectrum of $\mathcal{O}_{X, \overline{x}}$
is a singleton. Hence $x$ is a weakly associated point of
$\mathcal{F}$ by definition. The final statement follows
as $\mathcal{O}_{X, \overline{x}} \to \mathcal{O}_{Z, \overline{z}}$
is a surjection, the spectrum of $\mathcal{O}_{Z, \overline{z}}$
is a singleton, and $\mathcal{F}_{\overline{x}}$ is a nonzero
module over $\mathcal{O}_{Z, \overline{z}}$.
\end{proof}
\begin{lemma}
\label{lemma-minimal-support-in-weakly-ass-decent}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in |X|$. If
\begin{enumerate}
\item $X$ is decent (for example quasi-separated or locally separated),
\item $x \in \text{Supp}(\mathcal{F})$
\item $x$ is not a specialization of another point in
$\text{Supp}(\mathcal{F})$.
\end{enumerate}
Then $x \in \text{WeakAss}(\mathcal{F})$.
\end{lemma}
\begin{proof}
(A quasi-separated algebraic space is decent, see
Decent Spaces, Section \ref{decent-spaces-section-reasonable-decent}.
A locally separated algebraic space is decent, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-locally-separated-decent}.)
Choose a scheme $U$, a point $u \in U$, and an \'etale morphism
$f : U \to X$ mapping $u$ to $x$. By
Decent Spaces, Lemma
\ref{decent-spaces-lemma-decent-no-specializations-map-to-same-point}
if $u' \leadsto u$ is a nontrivial specialization, then
$f(u') \not = x$. Hence we see that $u \in \text{Supp}(f^*\mathcal{F})$
is not a specialization of another point of
$\text{Supp}(f^*\mathcal{F})$.
Hence $u \in \text{WeakAss}(f^*\mathcal{F})$ by
Divisors, Lemma \ref{lemma-minimal-support-in-weakly-ass}.
\end{proof}
\begin{lemma}
\label{lemma-finite-ass}
Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
Then $\text{Ass}(\mathcal{F}) \cap W$ is finite for
every quasi-compact open $W \subset |X|$.
\end{lemma}
\begin{proof}
Choose a quasi-compact scheme $U$ and an \'etale morphism $U \to X$
such that $W$ is the image of $|U| \to |X|$. Then $U$ is a
Noetherian scheme and we may apply
Divisors, Lemma \ref{divisors-lemma-finite-ass} to conclude.
\end{proof}
\begin{lemma}
\label{lemma-restriction-injective-open-contains-weakly-ass}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
If $U \to X$ is an \'etale morphism such that
$\text{WeakAss}(\mathcal{F}) \subset \Im(|U| \to |X|)$, then
$\Gamma(X, \mathcal{F}) \to \Gamma(U, \mathcal{F})$ is injective.
\end{lemma}
\begin{proof}
Let $s \in \Gamma(X, \mathcal{F})$ be a section which restricts to zero on $U$.
Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map
$\mathcal{O}_X \to \mathcal{F}$ defined by $s$. Then $\mathcal{F}'|_U = 0$.
This implies that
$\text{WeakAss}(\mathcal{F}') \cap \Im(|U| \to |X|) = \emptyset$
(by the definition of weakly associated points).
On the other hand,
$\text{WeakAss}(\mathcal{F}') \subset \text{WeakAss}(\mathcal{F})$
by Lemma \ref{lemma-ses-weakly-ass}. We conclude
$\text{Ass}(\mathcal{F}') = \emptyset$.
Hence $\mathcal{F}' = 0$ by Lemma \ref{lemma-weakly-ass-zero}.
\end{proof}
\begin{lemma}
\label{lemma-weakass-pushforward}
Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-compact and quasi-separated
morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module. Let $y \in |Y|$ be a point which is not in the
image of $|f|$. Then $y$ is not weakly associated to $f_*\mathcal{F}$.
\end{lemma}
\begin{proof}
By Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-pushforward}
the $\mathcal{O}_Y$-module $f_*\mathcal{F}$ is quasi-coherent hence
the lemma makes sense.
Choose an affine scheme $V$, a point $v \in V$, and an \'etale morphism
$V \to Y$ mapping $v$ to $y$. We may replace
$f : X \to Y$, $\mathcal{F}$, $y$ by
$X \times_Y V \to V$, $\mathcal{F}|_{X \times_Y V}$, $v$.
Thus we may assume $Y$ is an affine scheme.
In this case $X$ is quasi-compact, hence we can choose
an affine scheme $U$ and a surjective \'etale morphism $U \to X$.
Denote $g : U \to Y$ the composition.
Then $f_*\mathcal{F} \subset g_*(\mathcal{F}|_U)$.
By Lemma \ref{lemma-ses-weakly-ass}
we reduce to the case of schemes which is
Divisors, Lemma \ref{divisors-lemma-weakass-pushforward}.
\end{proof}
\begin{lemma}
\label{lemma-check-injective-on-weakass}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of
quasi-coherent $\mathcal{O}_X$-modules. Assume that for every
$x \in |X|$ at least one of the following happens
\begin{enumerate}
\item $\mathcal{F}_{\overline{x}} \to \mathcal{G}_{\overline{x}}$
is injective, or
\item $x \not \in \text{WeakAss}(\mathcal{F})$.
\end{enumerate}
Then $\varphi$ is injective.
\end{lemma}
\begin{proof}
The assumptions imply that $\text{WeakAss}(\Ker(\varphi)) = \emptyset$
and hence $\Ker(\varphi) = 0$ by Lemma \ref{lemma-weakly-ass-zero}.
\end{proof}
\section{Morphisms and weakly associated points}
\label{section-morphisms-weakly-associated}
\begin{lemma}
\label{lemma-weakly-ass-reverse-functorial}
Let $S$ be a scheme.
Let $f : X \to Y$ be an affine morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then we have
$$
\text{WeakAss}_S(f_*\mathcal{F}) \subset f(\text{WeakAss}_X(\mathcal{F}))
$$
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Set $U = X \times_Y V$. Then $U \to V$ is an affine morphism
of schemes. By our definition of weakly associated points
the problem is reduced to the morphism of schemes $U \to V$. This case is
treated in Divisors, Lemma \ref{divisors-lemma-weakly-ass-reverse-functorial}.
\end{proof}
\begin{lemma}
\label{lemma-ass-functorial-equal}
Let $S$ be a scheme.
Let $f : X \to Y$ be an affine morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
If $X$ is locally Noetherian, then we have
$$
\text{WeakAss}_Y(f_*\mathcal{F}) =
f(\text{WeakAss}_X(\mathcal{F}))
$$
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Set $U = X \times_Y V$. Then $U \to V$ is an affine morphism
of schemes and $U$ is locally Noetherian.
By our definition of weakly associated points
the problem is reduced to the morphism of schemes $U \to V$. This case is
treated in Divisors, Lemma \ref{divisors-lemma-ass-functorial-equal}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-associated-finite}
Let $S$ be a scheme.
Let $f : X \to Y$ be a finite morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\text{WeakAss}(f_*\mathcal{F}) = f(\text{WeakAss}(\mathcal{F}))$.
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Set $U = X \times_Y V$. Then $U \to V$ is a finite morphism
of schemes. By our definition of weakly associated points
the problem is reduced to the morphism of schemes $U \to V$. This case is
treated in Divisors, Lemma \ref{divisors-lemma-weakly-associated-finite}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-ass-pullback}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_Y$-module.
Let $x \in |X|$ and $y = f(x) \in |Y|$. If
\begin{enumerate}
\item $y \in \text{WeakAss}_S(\mathcal{G})$,
\item $f$ is flat at $x$, and
\item the dimension of the local ring of the fibre of $f$ at $x$
is zero (Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-dimension-fibre}),
\end{enumerate}
then $x \in \text{WeakAss}(f^*\mathcal{G})$.
\end{lemma}
\begin{proof}
Choose a scheme $V$, a point $v \in V$, and an \'etale morphism $V \to Y$
mapping $v$ to $y$. Choose a scheme $U$, a point $u \in U$, and an
\'etale morphism $U \to V \times_Y X$ mapping $v$ to a point lying over
$v$ and $x$. This is possible because there is a $t \in |V \times_Y X|$
mapping to $(v, y)$ by Properties of Spaces, Lemma
\ref{spaces-properties-lemma-points-cartesian}.
By definition we see that the dimension of $\mathcal{O}_{U_v, u}$ is zero.
Hence $u$ is a generic point of the fiber $U_v$.
By our definition of weakly associated points
the problem is reduced to the morphism of schemes $U \to V$.
This case is treated in
Divisors, Lemma \ref{divisors-lemma-weakly-ass-pullback}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-ass-change-fields}
Let $K/k$ be a field extension. Let $X$ be an algebraic space over $k$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $y \in X_K$ with image $x \in X$. If $y$ is a weakly
associated point of the pullback $\mathcal{F}_K$, then $x$
is a weakly associated point of $\mathcal{F}$.
\end{lemma}
\begin{proof}
This is the translation of
Divisors, Lemma \ref{divisors-lemma-weakly-ass-change-fields}
into the language of algebraic spaces. We omit the details of the
translation.
\end{proof}
\begin{lemma}
\label{lemma-finite-flat-weak-assassin-up-down}
Let $S$ be a scheme.
Let $f : X \to Y$ be a finite flat morphism of algebraic spaces.
Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_Y$-module.
Let $x \in |X|$ be a point with image $y \in |Y|$. Then
$$
x \in \text{WeakAss}(g^*\mathcal{G})
\Leftrightarrow
y \in \text{WeakAss}(\mathcal{G})
$$
\end{lemma}
\begin{proof}
Follows immediately from the case of schemes
(More on Flatness, Lemma \ref{flat-lemma-finite-flat-weak-assassin-up-down})
by \'etale localization.
\end{proof}
\begin{lemma}
\label{lemma-etale-weak-assassin-up-down}
Let $S$ be a scheme.
Let $f : X \to Y$ be an \'etale morphism of algebraic spaces.
Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_Y$-module.
Let $x \in |X|$ be a point with image $y \in |Y|$. Then
$$
x \in \text{WeakAss}(f^*\mathcal{G})
\Leftrightarrow
y \in \text{WeakAss}(\mathcal{G})
$$
\end{lemma}
\begin{proof}
This is immediate from the definition of weakly associated points
and in fact the corresponding lemma for the case of schemes
(More on Flatness, Lemma \ref{flat-lemma-etale-weak-assassin-up-down})
is the basis for our definition.
\end{proof}
\section{Relative weak assassin}
\label{section-relative-weak-assassin}
\noindent
We need a couple of lemmas to define this gadget.
\begin{lemma}
\label{lemma-locally-noetherian-fibre}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Let $y \in |Y|$. The following are equivalent
\begin{enumerate}
\item for some scheme $V$, point $v \in V$, and \'etale morphism $V \to Y$
mapping $v$ to $y$, the algebraic space $X_v$ is locally Noetherian,
\item for every scheme $V$, point $v \in V$, and \'etale morphism $V \to Y$
mapping $v$ to $y$, the algebraic space $X_v$ is locally Noetherian, and
\item there exists a field $k$ and a morphism $\Spec(k) \to Y$ representing
$y$ such that $X_k$ is locally Noetherian.
\end{enumerate}
If there exists a field $k_0$ and a monomorphism $\Spec(k_0) \to Y$
representing $y$, then these are also equivalent to
\begin{enumerate}
\item[(4)] the algebraic space $X_{k_0}$ is locally Noetherian.
\end{enumerate}
\end{lemma}
\begin{proof}
Observe that $X_v = v \times_Y X = \Spec(\kappa(v)) \times_Y X$.
Hence the implications (2) $\Rightarrow$ (1) $\Rightarrow$ (3) are clear.
Assume that $\Spec(k) \to Y$ is a morphism from the spectrum of a field
such that $X_k$ is locally Noetherian. Let $V \to Y$ be an \'etale morphism
from a scheme $V$ and let $v \in V$ a point mapping to $y$.
Then the scheme $v \times_Y \Spec(k)$ is nonempty. Choose a
point $w \in v \times_Y \Spec(k)$. Consider the morphisms
$$
X_v \longleftarrow X_w \longrightarrow X_k
$$
Since $V \to Y$ is \'etale and since $w$ may be viewed as a point of
$V \times_Y \Spec(k)$, we see that $\kappa(w) \supset k$
is a finite separable extension of fields
(Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}).
Thus $X_w \to X_k$ is a finite \'etale morphism as a base change of
$w \to \Spec(k)$. Hence $X_w$ is locally Noetherian
(Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-finite-type-locally-noetherian}).
The morphism $X_w \to X_v$ is a surjective, affine, flat morphism
as a base change of the surjective, affine, flat morphism $w \to v$.
Then the fact that $X_w$ is locally Noetherian implies that
$X_v$ is locally Noetherian. This can be seen by picking a
surjective \'etale morphism $U \to X$ and then using that
$U_w \to U_v$ is surjective, affine, and flat. Working
affine locally on the scheme $U_v$ we conclude
that $U_w$ is locally Noetherian by
Algebra, Lemma \ref{algebra-lemma-descent-Noetherian}.
\medskip\noindent
Finally, it suffices to prove that (3) implies (4)
in case we have a monomorphism $\Spec(k_0) \to Y$ in the class of $y$.
Then $\Spec(k) \to Y$ factors as $\Spec(k) \to \Spec(k_0) \to Y$.
The argument given above then shows that $X_k$ being
locally Noetherian impies that $X_{k_0}$ is locally Noetherian.
\end{proof}
\begin{definition}
\label{definition-locally-Noetherian-fibre}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Let $y \in |Y|$. We say {\it the fibre of $f$ over $y$ is
locally Noetherian} if the equivalent conditions (1), (2), and (3)
of Lemma \ref{lemma-locally-noetherian-fibre} are satisfied.
We say {\it the fibres of $f$ are locally Noetherian} if this
holds for every $y \in |Y|$.
\end{definition}
\noindent
Of course, the usual way to guarantee locally Noetherian fibres is
to assume the morphism is locally of finite type.
\begin{lemma}
\label{lemma-locally-finite-type-locally-Noetherian-fibres}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. If $f$ is locally of finite type, then
the fibres of $f$ are locally Noetherian.
\end{lemma}
\begin{proof}
This follows from Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-finite-type-locally-noetherian}
and the fact that the spectrum of a field is Noetherian.
\end{proof}
\begin{lemma}
\label{lemma-relative-assassin}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Let $x \in |X|$ and $y = f(x) \in |Y|$.
Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module. Consider commutative diagrams
$$
\xymatrix{
X \ar[d] & X \times_Y V \ar[d] \ar[l] & X_v \ar[d] \ar[l] \\
Y & V \ar[l] & v \ar[l]
}
\quad
\xymatrix{
X \ar[d] & U \ar[d] \ar[l] & U_v \ar[d] \ar[l] \\
Y & V \ar[l] & \ar[l] v
}
\quad
\xymatrix{
x \ar@{|->}[d] &
x' \ar@{|->}[d] \ar@{|->}[l] &
u \ar@{|->}[ld] \ar@{|->}[l] \\
y &
v \ar@{|->}[l]
}
$$
where $V$ and $U$ are schemes, $V \to Y$ and $U \to X \times_Y V$
are \'etale, $v \in V$, $x' \in |X_v|$, $u \in U$ are points
related as in the last diagram.
Denote $\mathcal{F}|_{X_v}$ and $\mathcal{F}|_{U_v}$
the pullbacks of $\mathcal{F}$.
The following are equivalent
\begin{enumerate}
\item for some $V, v, x'$ as above $x'$ is a weakly associated
point of $\mathcal{F}|_{X_v}$,
\item for every $V \to Y, v, x'$ as above $x'$ is a weakly associated
point of $\mathcal{F}|_{X_v}$,
\item for some $U, V, u, v$ as above $u$ is a weakly associated
point of $\mathcal{F}|_{U_v}$,
\item for every $U, V, u, v$ as above $u$ is a weakly associated
point of $\mathcal{F}|_{U_v}$,
\item for some field $k$ and morphism $\Spec(k) \to Y$ representing $y$
and some $t \in |X_k|$ mapping to $x$, the point $t$ is a weakly
associated point of $\mathcal{F}|_{X_k}$.
\end{enumerate}
If there exists a field $k_0$ and a monomorphism $\Spec(k_0) \to Y$
representing $y$, then these are also equivalent to
\begin{enumerate}
\item[(6)] $x_0$ is a weakly associated point of $\mathcal{F}|_{X_{k_0}}$
where $x_0 \in |X_{k_0}|$ is the unique point mapping to $x$.
\end{enumerate}
If the fibre of $f$ over $y$ is locally Noetherian, then in
conditions (1), (2), (3), (4), and (6) we may replace
``weakly associated'' with ``associated''.
\end{lemma}
\begin{proof}
Observe that given $V, v, x'$ as in the lemma we can find
$U \to X \times_Y V$ and $u \in U$ mapping to $x'$
and then the morphism $U_v \to X_v$ is \'etale.
Thus it is clear that (1) and (3) are equivalent
as well as (2) and (4). Each of these implies (5).
We will show that (5) implies (2).
Suppose given $V, v, x'$ as well as $\Spec(k) \to X$ and $t \in |X_k|$
such that the point $t$ is a weakly
associated point of $\mathcal{F}|_{X_k}$.
We can choose a point $w \in v \times_Y \Spec(k)$.
Then we obtain the morphisms
$$
X_v \longleftarrow X_w \longrightarrow X_k
$$
Since $V \to Y$ is \'etale and since $w$ may be viewed as a point of
$V \times_Y \Spec(k)$, we see that $\kappa(w) \supset k$
is a finite separable extension of fields
(Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}).
Thus $X_w \to X_k$ is a finite \'etale morphism as a base change of
$w \to \Spec(k)$. Thus any point $x''$ of $X_w$ lying over $t$
is a weakly associated point of $\mathcal{F}|_{X_w}$ by
Lemma \ref{lemma-etale-weak-assassin-up-down}.
We may pick $x''$ mapping to $x'$
(Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}).
Then Lemma \ref{lemma-weakly-ass-change-fields}
implies that $x'$ is a weakly associated
point of $\mathcal{F}|_{X_v}$.
\medskip\noindent
To finish the proof it suffices to show that the equivalent
conditions (1) -- (5) imply (6) if we are given
$\Spec(k_0) \to Y$ as in (6). In this case the morphism
$\Spec(k) \to Y$ of (5) factors uniquely as $\Spec(k) \to \Spec(k_0) \to Y$.
Then $x_0$ is the image of $t$ under the morphism $X_k \to X_{k_0}$.
Hence the same lemma as above shows that (6) is true.
\end{proof}
\begin{definition}
\label{definition-relative-weak-assassin}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
The {\it relative weak assassin of $\mathcal{F}$ in $X$ over $Y$}
is the set $\text{WeakAss}_{X/Y}(\mathcal{F}) \subset |X|$
consisting of those $x \in |X|$ such that the equivalent conditions of
Lemma \ref{lemma-relative-assassin} are satisfied.
If the fibres of $f$ are locally Noetherian
(Definition \ref{definition-locally-Noetherian-fibre})
then we use the notation $\text{Ass}_{X/Y}(\mathcal{F})$.
\end{definition}
\noindent
With this notation we can formulate some of the results
already proven for schemes.
\begin{lemma}
\label{lemma-bourbaki}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_Y$-module.
Assume
\begin{enumerate}
\item $\mathcal{F}$ is flat over $Y$,
\item $X$ and $Y$ are locally Noetherian, and
\item the fibres of $f$ are locally Noetherian.
\end{enumerate}
Then
$$
\text{Ass}_X(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) =
\{x \in \text{Ass}_{X/Y}(\mathcal{F})\text{ such that }
f(x) \in \text{Ass}_Y(\mathcal{G}) \}
$$
\end{lemma}
\begin{proof}
Via \'etale localization, this is an immediate consequence of the result
for schemes, see
Divisors, Lemma \ref{divisors-lemma-bourbaki}.
The result for schemes is more general only because
we haven't defined associated points for
non-Noetherian algebraic spaces (hence we need to assume $X$
and the fibres of $X \to Y$ are locally Noetherian to even
be able to formulate this result).
\end{proof}
\begin{lemma}
\label{lemma-base-change-relative-assassin}
Let $S$ be a scheme. Let
$$
\xymatrix{
X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\
Y' \ar[r]^g & Y
}
$$
be a cartesian diagram of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module
and set $\mathcal{F}' = (g')^*\mathcal{F}$.
If $f$ is locally of finite type, then
\begin{enumerate}
\item $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')
\Rightarrow g'(x') \in \text{Ass}_{X/Y}(\mathcal{F})$
\item if $x \in \text{Ass}_{X/Y}(\mathcal{F})$, then given
$y' \in |Y'|$ with $f(x) = g(y')$, there exists an
$x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$
with $g'(x') = x$ and $f'(x') = y'$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from the case of schemes by \'etale localization.
We write out the details completely. Choose a scheme
$V$ and a surjective \'etale morphism $V \to Y$.
Choose a scheme $U$ and a surjective
\'etale morphism $U \to V \times_Y X$. Choose a scheme $V'$
and a surjective \'etale morphism $V' \to V \times_Y Y'$.
Then $U' = V' \times_V U$ is a scheme and the morphism
$U' \to X'$ is surjective and \'etale.
\medskip\noindent
Proof of (1). Choose $u' \in U'$ mapping to $x'$.
Denote $v' \in V'$ the image of $u'$.
Then $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ is
equivalent to $u' \in \text{Ass}(\mathcal{F}|_{U'_{v'}})$
by definition (writing $\text{Ass}$ instead of $\text{WeakAss}$
makes sense as $U'_{v'}$ is locally Noetherian).
Applying Divisors, Lemma \ref{divisors-lemma-base-change-relative-assassin}
we see that the image $u \in U$ of $u'$ is in
$\text{Ass}(\mathcal{F}|_{U_v})$ where $v \in V$ is the image of $u$.
This in turn means $g'(x') \in \text{Ass}_{X/Y}(\mathcal{F})$.
\medskip\noindent
Proof of (2). Choose $u \in U$ mapping to $x$.
Denote $v \in V$ the image of $u$.
Then $x \in \text{Ass}_{X/Y}(\mathcal{F})$ is
equivalent to $u \in \text{Ass}(\mathcal{F}|_{U_v})$
by definition. Choose a point $v' \in V'$ mapping
to $y' \in |Y'|$ and to $v \in V$ (possible by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}).
Let $t \in \Spec(\kappa(v') \otimes_{\kappa(v)} \kappa(u))$
be a generic point of an irreducible component.
Let $u' \in U'$ be the image of $t$.
Applying Divisors, Lemma \ref{divisors-lemma-base-change-relative-assassin}
we see that $u' \in \text{Ass}(\mathcal{F}'|_{U'_{v'}})$.
This in turn means $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$
where $x' \in |X'|$ is the image of $u'$.
\end{proof}
\begin{lemma}
\label{lemma-base-change-relative-assassin-quasi-finite}
With notation and assumptions as in
Lemma \ref{lemma-base-change-relative-assassin}.
Assume $g$ is locally quasi-finite, or more generally that
for every $y' \in |Y'|$ the transcendence degree of $y'/g(y')$ is $0$.
Then $\text{Ass}_{X'/Y'}(\mathcal{F}')$ is the inverse image of
$\text{Ass}_{X/Y}(\mathcal{F})$.
\end{lemma}
\begin{proof}
The transcendence degree of a point over its image is defined in
Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-dimension-fibre}.
Let $x' \in |X'|$ with image $x \in |X|$.
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Choose a scheme $U$ and a surjective
\'etale morphism $U \to V \times_Y X$. Choose a scheme $V'$
and a surjective \'etale morphism $V' \to V \times_Y Y'$.
Then $U' = V' \times_V U$ is a scheme and the morphism
$U' \to X'$ is surjective and \'etale.
Choose $u \in U$ mapping to $x$.
Denote $v \in V$ the image of $u$.
Then $x \in \text{Ass}_{X/Y}(\mathcal{F})$ is
equivalent to $u \in \text{Ass}(\mathcal{F}|_{U_v})$
by definition. Choose a point $u' \in U'$ mapping
to $x' \in |X'|$ and to $u \in U$ (possible by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}).
Let $v' \in V'$ be the image of $u'$.
Then $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ is
equivalent to $u' \in \text{Ass}(\mathcal{F}'|_{U'_{v'}})$
by definition.
Now the lemma follows from the discussion in
Divisors, Remark \ref{divisors-remark-base-change-relative-assassin}
applied to $u' \in \Spec(\kappa(v') \otimes_{\kappa(v)} \kappa(u))$.
\end{proof}
\section{Effective Cartier divisors}
\label{section-effective-Cartier-divisors}
\noindent
For some reason it seem convenient to define the notion of an effective
Cartier divisor before anything else. Note that in
Morphisms of Spaces, Section \ref{spaces-morphisms-section-closed-immersions}
we discussed the correspondence between closed subspaces and quasi-coherent
sheaves of ideals. Moreover, in
Properties of Spaces, Section
\ref{spaces-properties-section-properties-modules}, we discussed properties
of quasi-coherent modules, in particular ``locally generated by $1$ element''.
These references show that the following definition is
compatible with the definition for schemes.
\begin{definition}
\label{definition-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
\begin{enumerate}
\item A {\it locally principal closed subspace} of $X$ is a closed subspace
whose sheaf of ideals is locally generated by $1$ element.
\item An {\it effective Cartier divisor} on $X$ is a closed subspace
$D \subset X$ such that the ideal sheaf $\mathcal{I}_D \subset \mathcal{O}_X$
is an invertible $\mathcal{O}_X$-module.
\end{enumerate}
\end{definition}
\noindent
Thus an effective Cartier divisor is a locally principal closed subspace,
but the converse is not always true. Effective Cartier divisors are closed
subspaces of pure codimension $1$ in the strongest possible sense. Namely
they are locally cut out by a single element which is not a zerodivisor.
In particular they are nowhere dense.
\begin{lemma}
\label{lemma-characterize-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be a closed subspace.
The following are equivalent:
\begin{enumerate}
\item The subspace $D$ is an effective Cartier divisor on $X$.
\item For some scheme $U$ and surjective \'etale morphism $U \to X$
the inverse image $D \times_X U$ is an effective Cartier divisor on $U$.
\item For every scheme $U$ and every \'etale morphism $U \to X$
the inverse image $D \times_X U$ is an effective Cartier divisor on $U$.
\item For every $x \in |D|$ there exists an \'etale morphism
$(U, u) \to (X, x)$ of pointed algebraic spaces such that $U = \Spec(A)$
and $D \times_X U = \Spec(A/(f))$ with $f \in A$ not a zerodivisor.
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1) -- (3) follows from
Definition \ref{definition-effective-Cartier-divisor}
and the references preceding it.
Assume (1) and let $x \in |D|$. Choose a scheme $W$ and a
surjective \'etale morphism
$W \to X$. Choose $w \in D \times_X W$ mapping to $x$.
By (3) $D \times_X W$ is an effective Cartier
divisor on $W$. Hence we can find affine \'etale neighbourhood $U$
by choosing an affine open neighbourhood of $w$ in $W$ as in
Divisors, Lemma \ref{divisors-lemma-characterize-effective-Cartier-divisor}.
\medskip\noindent
Assume (4). Then we see that $\mathcal{I}_D|_U$ is invertible by
Divisors, Lemma \ref{divisors-lemma-characterize-effective-Cartier-divisor}.
Since we can find an \'etale covering of $X$ by the collection of
all such $U$ and $X \setminus D$, we conclude that
$\mathcal{I}_D$ is an invertible $\mathcal{O}_X$-module.
\end{proof}
\begin{lemma}
\label{lemma-complement-locally-principal-closed-subscheme}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $Z \subset X$ be a locally principal closed
subspace. Let $U = X \setminus Z$. Then $U \to X$ is an affine morphism.
\end{lemma}
\begin{proof}
The question is \'etale local on $X$, see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-affine-local}
and
Lemma \ref{lemma-characterize-effective-Cartier-divisor}.
Thus this follows from the case of schemes which is
Divisors, Lemma
\ref{divisors-lemma-complement-locally-principal-closed-subscheme}.
\end{proof}
\begin{lemma}
\label{lemma-complement-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be an effective Cartier divisor.
Let $U = X \setminus D$. Then $U \to X$ is an affine morphism and $U$
is scheme theoretically dense in $X$.
\end{lemma}
\begin{proof}
Affineness is Lemma \ref{lemma-complement-locally-principal-closed-subscheme}.
The density question is \'etale local on $X$ by
Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-scheme-theoretically-dense}.
Thus this follows from the case of schemes which is
Divisors, Lemma
\ref{divisors-lemma-complement-effective-Cartier-divisor}.
\end{proof}
\begin{lemma}
\label{lemma-effective-Cartier-makes-dimension-drop}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be an effective Cartier divisor.
Let $x \in |D|$.
If $\dim_x(X) < \infty$, then $\dim_x(D) < \dim_x(X)$.
\end{lemma}
\begin{proof}
Both the definition of an effective Cartier divisor and of the
dimension of an an algebraic space at a point
(Properties of Spaces, Definition
\ref{spaces-properties-definition-dimension-at-point})
are \'etale local. Hence this lemma follows from the case of schemes
which is
Divisors, Lemma \ref{divisors-lemma-effective-Cartier-makes-dimension-drop}.
\end{proof}
\begin{definition}
\label{definition-sum-effective-Cartier-divisors}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Given effective Cartier divisors
$D_1$, $D_2$ on $X$ we set $D = D_1 + D_2$ equal to the
closed subspace of $X$ corresponding to the quasi-coherent
sheaf of ideals
$\mathcal{I}_{D_1}\mathcal{I}_{D_2} \subset \mathcal{O}_S$.
We call this the {\it sum of the effective Cartier divisors
$D_1$ and $D_2$}.
\end{definition}
\noindent
It is clear that we may define the sum $\sum n_iD_i$ given
finitely many effective Cartier divisors $D_i$ on $X$
and nonnegative integers $n_i$.
\begin{lemma}
\label{lemma-sum-effective-Cartier-divisors}
The sum of two effective Cartier divisors is an effective
Cartier divisor.
\end{lemma}
\begin{proof}
Omitted. \'Etale locally this reduces to the following simple
algebra fact: if $f_1, f_2 \in A$ are nonzerodivisors of a ring $A$, then
$f_1f_2 \in A$ is a nonzerodivisor.
\end{proof}
\begin{lemma}
\label{lemma-sum-closed-subschemes-effective-Cartier}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $Z, Y$ be two closed subspaces of $X$
with ideal sheaves $\mathcal{I}$ and $\mathcal{J}$. If $\mathcal{I}\mathcal{J}$
defines an effective Cartier divisor $D \subset X$, then $Z$ and $Y$
are effective Cartier divisors and $D = Z + Y$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-characterize-effective-Cartier-divisor}
this reduces to the case of schemes which is
Divisors, Lemma \ref{divisors-lemma-sum-closed-subschemes-effective-Cartier}.
\end{proof}