-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathpointodysseydataset.py
369 lines (296 loc) · 12.9 KB
/
pointodysseydataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from numpy import random
import torch
import numpy as np
import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from PIL import Image
import random
from torch._C import dtype, set_flush_denormal
import utils.basic
import utils.improc
import glob
import cv2
from torchvision.transforms import ColorJitter, GaussianBlur
np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')
class PointOdysseyDataset(torch.utils.data.Dataset):
def __init__(self,
dataset_location='/orion/group/point_odyssey',
dset='TRAIN',
use_augs=False,
S=8,
N=32,
crop_size=(368, 496),
):
print('loading pointodyssey dataset...')
self.S = S
self.N = N
self.use_augs = use_augs
self.dset = dset
self.rgb_paths = []
self.traj_paths = []
self.annotation_paths = []
self.start_idx = []
self.subdirs = []
self.sequences = []
self.seq_names = []
if dset == "TRAIN":
self.subdirs.append(os.path.join(dataset_location, 'train'))
elif dset == "VAL":
self.subdirs.append(os.path.join(dataset_location, 'val'))
elif dset == "TEST":
self.subdirs.append(os.path.join(dataset_location, 'test_clean'))
for subdir in self.subdirs:
for seq in glob.glob(os.path.join(subdir, "*")):
seq_name = seq.split('/')[-1]
self.sequences.append(seq)
self.seq_names.append(seq_name)
print('found %d unique videos in %s (dset=%s)' % (len(self.sequences), dataset_location, dset))
## load trajectories
print('loading trajectories...')
for seq in self.sequences:
dir_path = dataset_location
rgb_path = os.path.join(seq, 'rgbs')
for ii in range(len(os.listdir(rgb_path)) - self.S):
self.rgb_paths.append([os.path.join(dir_path, seq, 'rgbs', 'rgb_%05d.jpg' % (ii + jj + 1)) for jj in range(self.S)])
self.annotation_paths.append(os.path.join(seq, 'annotations.npz'))
self.start_idx.append(ii)
print('collected %d clips of length %d in %s (dset=%s)' % (
len(self.rgb_paths), self.S, dataset_location, dset))
# photometric augmentation
# self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14)
self.photo_aug = ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.25 / 3.14)
self.blur_aug = GaussianBlur(11, sigma=(0.1, 2.0))
self.blur_aug_prob = 0.2
self.color_aug_prob = 0.5
# occlusion augmentation
self.eraser_aug_prob = 0.25
self.eraser_bounds = [20, 300]
# spatial augmentations
self.crop_size = crop_size
self.min_scale = -0.1 # 2^this
self.max_scale = 1.0 # 2^this
# self.resize_lim = [0.8, 1.2]
self.resize_aug_prob = 0.8
self.crop_aug_prob = 0.5
self.max_crop_offset = 10
self.stretch_prob = 0.8
self.max_stretch = 0.2
self.do_flip = True
self.h_flip_prob = 0.5
self.v_flip_prob = 0.5
def getitem_helper(self, index):
sample = None
gotit = False
rgb_paths = self.rgb_paths[index]
# print('rgb_paths', len(rgb_paths))
full_idx = self.start_idx[index] + np.arange(self.S)
annotations_path = self.annotation_paths[index]
annotations = np.load(annotations_path, allow_pickle=True)
# print(annotations.files)
trajs = annotations['trajs_2d'][full_idx].astype(np.float32)
visibs = annotations['visibilities'][full_idx].astype(np.float32)
visibs = (visibs==1).astype(np.float32)
S,N,D = trajs.shape
assert(D==2)
assert(S==self.S)
if N < self.N:
print('returning before cropping: N=%d; need N=%d' % (N, self.N))
return None, False
rgbs = []
for rgb_path in rgb_paths:
with Image.open(rgb_path) as im:
rgbs.append(np.array(im)[:, :, :3])
if self.use_augs:
assert(False)
rgbs, trajs, visibs = self.add_photometric_augs(rgbs, trajs, visibs)
rgbs, trajs = self.add_spatial_augs(rgbs, trajs)
else:
rgbs, trajs = self.just_crop(rgbs, trajs)
H,W,C = rgbs[0].shape
assert(C==3)
# update visibility annotations
for s in range(S):
# avoid 1px edge
oob_inds = np.logical_or(
np.logical_or(trajs[s,:,0] < 1, trajs[s,:,0] > W-2),
np.logical_or(trajs[s,:,1] < 1, trajs[s,:,1] > H-2))
visibs[s,oob_inds] = 0
# ensure that the point is visible at frame0
vis0 = visibs[0] > 0
trajs = trajs[:,vis0]
visibs = visibs[:,vis0]
# ensure that the point is visible in at least 3 frames total
vis_ok = np.sum(visibs, axis=0) >= 3
trajs = trajs[:,vis_ok]
visibs = visibs[:,vis_ok]
N = trajs.shape[1]
# if N <= self.N:
# print('N=%d; ideally we want N=%d, but we will pad' % (N, self.N))
N_ = min(N, self.N)
# prep for batching, by fixing N
valids = np.ones_like(visibs)
if N > self.N:
inds = utils.misc.farthest_point_sample_py(trajs[0], N_)
else:
inds = np.random.choice(trajs.shape[1], N_, replace=False)
trajs_full = np.zeros((self.S, self.N, 2)).astype(np.float32)
visibs_full = np.zeros((self.S, self.N)).astype(np.float32)
valids_full = np.zeros((self.S, self.N)).astype(np.float32)
trajs_full[:,:N_] = trajs[:,inds]
visibs_full[:,:N_] = visibs[:,inds]
valids_full[:,:N_] = valids[:,inds]
rgbs = torch.from_numpy(np.stack(rgbs, 0)).permute(0,3,1,2) # S, C, H, W
trajs = torch.from_numpy(trajs_full) # S, N, 2
visibs = torch.from_numpy(visibs_full) # S, N
valids = torch.from_numpy(valids_full) # S, N
sample = {
'rgbs': rgbs,
'trajs': trajs,
'visibs': visibs,
'valids': valids,
}
return sample, True
def __getitem__(self, index):
gotit = False
sample, gotit = self.getitem_helper(index)
if not gotit:
print('warning: sampling failed')
# fake sample, so we can still collate
sample = {
'rgbs': torch.zeros((self.S, 3, self.crop_size[0], self.crop_size[1])),
'trajs': torch.zeros((self.S, self.N, 2)),
'visibs': torch.zeros((self.S, self.N)),
'valids': torch.zeros((self.S, self.N)),
}
return sample, gotit
def add_photometric_augs(self, rgbs, trajs, visibs):
T, N, _ = trajs.shape
# print('trajs', trajs.shape)
# print('len(rgbs)', len(rgbs))
S = len(rgbs)
H, W = rgbs[0].shape[:2]
assert (S == T)
# rgbs = [0.1*rgb.astype(np.float32) for rgb in rgbs]
############ eraser transform (per image after the first) ############
rgbs = [rgb.astype(np.float32) for rgb in rgbs]
for i in range(1, S):
if np.random.rand() < self.eraser_aug_prob:
mean_color = np.mean(rgbs[i].reshape(-1, 3), axis=0)
for _ in range(np.random.randint(1, 3)): # number of times to occlude
xc = np.random.randint(0, W)
yc = np.random.randint(0, H)
dx = np.random.randint(self.eraser_bounds[0], self.eraser_bounds[1])
dy = np.random.randint(self.eraser_bounds[0], self.eraser_bounds[1])
x0 = np.clip(xc - dx / 2, 0, W - 1).round().astype(np.int32)
x1 = np.clip(xc + dx / 2, 0, W - 1).round().astype(np.int32)
y0 = np.clip(yc - dy / 2, 0, W - 1).round().astype(np.int32)
y1 = np.clip(yc + dy / 2, 0, W - 1).round().astype(np.int32)
# print(x0, x1, y0, y1)
rgbs[i][y0:y1, x0:x1, :] = mean_color
occ_inds = np.logical_and(np.logical_and(trajs[i, :, 0] >= x0, trajs[i, :, 0] < x1),
np.logical_and(trajs[i, :, 1] >= y0, trajs[i, :, 1] < y1))
visibs[i, occ_inds] = 0
rgbs = [rgb.astype(np.uint8) for rgb in rgbs]
############ photometric augmentation ############
if np.random.rand() < self.color_aug_prob:
# random per-frame amount of aug
rgbs = [np.array(self.photo_aug(Image.fromarray(rgb)), dtype=np.uint8) for rgb in rgbs]
if np.random.rand() < self.blur_aug_prob:
# random per-frame amount of blur
rgbs = [np.array(self.blur_aug(Image.fromarray(rgb)), dtype=np.uint8) for rgb in rgbs]
return rgbs, trajs, visibs
def add_spatial_augs(self, rgbs, trajs):
T, N, _ = trajs.shape
# print('trajs', trajs.shape)
# print('len(rgbs)', len(rgbs))
S = len(rgbs)
H, W = rgbs[0].shape[:2]
assert (S == T)
rgbs = [rgb.astype(np.float32) for rgb in rgbs]
############ spatial transform ############
# scaling + stretching
scale_x = 1.0
scale_y = 1.0
H_new = H
W_new = W
if np.random.rand() < self.resize_aug_prob:
# print('spat')
min_scale = np.maximum(
(self.crop_size[0] + 8) / float(H),
(self.crop_size[1] + 8) / float(W))
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
scale_x = scale
scale_y = scale
# print('scale', scale)
if np.random.rand() < self.stretch_prob:
# print('stretch')
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
scale_x = np.clip(scale_x, min_scale, None)
scale_y = np.clip(scale_y, min_scale, None)
# print('scale_x,y', scale_x, scale_y)
H_new = int(H * scale_y)
W_new = int(W * scale_x)
# print('H_new, W_new', H_new, W_new)
# dim_resize = (W_new, H_new * S)
rgbs = [cv2.resize(rgb, (W_new, H_new), interpolation=cv2.INTER_LINEAR) for rgb in rgbs]
trajs[:, :, 0] *= scale_x
trajs[:, :, 1] *= scale_y
if np.random.rand() < self.crop_aug_prob:
# per-timestep crop
y0 = np.random.randint(0, H_new - self.crop_size[0])
x0 = np.random.randint(0, W_new - self.crop_size[1])
for s in range(S):
# on each frame, maybe shift a bit more
if s > 0 and np.random.rand() < self.crop_aug_prob:
x0 = x0 + np.random.randint(-self.max_crop_offset, self.max_crop_offset + 1)
y0 = y0 + np.random.randint(-self.max_crop_offset, self.max_crop_offset + 1)
y0 = min(max(0, y0), H_new - self.crop_size[0] - 1)
x0 = min(max(0, x0), W_new - self.crop_size[1] - 1)
rgbs[s] = rgbs[s][y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]
trajs[s, :, 0] -= x0
trajs[s, :, 1] -= y0
else:
# simple crop
y0 = np.random.randint(0, H_new - self.crop_size[0])
x0 = np.random.randint(0, W_new - self.crop_size[1])
rgbs = [rgb[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] for rgb in rgbs]
trajs[:, :, 0] -= x0
trajs[:, :, 1] -= y0
H_new = self.crop_size[0]
W_new = self.crop_size[1]
# flip
h_flipped = False
v_flipped = False
if self.do_flip:
# h flip
if np.random.rand() < self.h_flip_prob:
# print('h flip')
h_flipped = True
rgbs = [rgb[:, ::-1] for rgb in rgbs]
# v flip
if np.random.rand() < self.v_flip_prob:
# print('v flip')
v_flipped = True
rgbs = [rgb[::-1] for rgb in rgbs]
if h_flipped:
trajs[:, :, 0] = W_new - trajs[:, :, 0]
if v_flipped:
trajs[:, :, 1] = H_new - trajs[:, :, 1]
return rgbs, trajs
def just_crop(self, rgbs, trajs):
T, N, _ = trajs.shape
S = len(rgbs)
H, W = rgbs[0].shape[:2]
assert(S==T)
# simple random crop
y0 = np.random.randint(0, H - self.crop_size[0])
x0 = np.random.randint(0, W - self.crop_size[1])
rgbs = [rgb[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] for rgb in rgbs]
trajs[:,:,0] -= x0
trajs[:,:,1] -= y0
return rgbs, trajs
def __len__(self):
return len(self.rgb_paths)