forked from benknight/hue-python-rgb-converter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrgb_xy.py
256 lines (201 loc) · 9.05 KB
/
rgb_xy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# -*- coding: utf-8 -*-
"""
Library for RGB / CIE1931 "x, y" coversion.
Based on Philips implementation guidance:
http://www.developers.meethue.com/documentation/color-conversions-rgb-xy
Copyright (c) 2016 Benjamin Knight / MIT License.
"""
import math
import random
from collections import namedtuple
# Represents a CIE 1931 XY coordinate pair.
XYPoint = namedtuple('XYPoint', ['x', 'y'])
# LivingColors Iris, Bloom, Aura, LightStrips
GamutA = (
XYPoint(0.704, 0.296),
XYPoint(0.2151, 0.7106),
XYPoint(0.138, 0.08),
)
# Hue A19 bulbs
GamutB = (
XYPoint(0.675, 0.322),
XYPoint(0.4091, 0.518),
XYPoint(0.167, 0.04),
)
# Hue BR30, A19 (Gen 3), Hue Go, LightStrips plus
GamutC = (
XYPoint(0.692, 0.308),
XYPoint(0.17, 0.7),
XYPoint(0.153, 0.048),
)
def get_light_gamut(modelId):
"""Gets the correct color gamut for the provided model id.
Docs: http://www.developers.meethue.com/documentation/supported-lights
"""
if modelId in ('LST001', 'LLC010', 'LLC011', 'LLC012', 'LLC006', 'LLC007', 'LLC013'):
return GamutA
elif modelId in ('LCT001', 'LCT007', 'LCT002', 'LCT003', 'LLM001'):
return GamutB
elif modelId in ('LCT010', 'LCT014', 'LCT011', 'LLC020', 'LST002'):
return GamutC
else:
raise ValueError
return None
class ColorHelper:
def __init__(self, gamut=GamutB):
self.Red = gamut[0]
self.Lime = gamut[1]
self.Blue = gamut[2]
def hex_to_red(self, hex):
"""Parses a valid hex color string and returns the Red RGB integer value."""
return int(hex[0:2], 16)
def hex_to_green(self, hex):
"""Parses a valid hex color string and returns the Green RGB integer value."""
return int(hex[2:4], 16)
def hex_to_blue(self, hex):
"""Parses a valid hex color string and returns the Blue RGB integer value."""
return int(hex[4:6], 16)
def hex_to_rgb(self, h):
"""Converts a valid hex color string to an RGB array."""
rgb = (self.hex_to_red(h), self.hex_to_green(h), self.hex_to_blue(h))
return rgb
def rgb_to_hex(self, r, g, b):
"""Converts RGB to hex."""
return '%02x%02x%02x' % (r, g, b)
def random_rgb_value(self):
"""Return a random Integer in the range of 0 to 255, representing an RGB color value."""
return random.randrange(0, 256)
def cross_product(self, p1, p2):
"""Returns the cross product of two XYPoints."""
return (p1.x * p2.y - p1.y * p2.x)
def check_point_in_lamps_reach(self, p):
"""Check if the provided XYPoint can be recreated by a Hue lamp."""
v1 = XYPoint(self.Lime.x - self.Red.x, self.Lime.y - self.Red.y)
v2 = XYPoint(self.Blue.x - self.Red.x, self.Blue.y - self.Red.y)
q = XYPoint(p.x - self.Red.x, p.y - self.Red.y)
s = self.cross_product(q, v2) / self.cross_product(v1, v2)
t = self.cross_product(v1, q) / self.cross_product(v1, v2)
return (s >= 0.0) and (t >= 0.0) and (s + t <= 1.0)
def get_closest_point_to_line(self, A, B, P):
"""Find the closest point on a line. This point will be reproducible by a Hue lamp."""
AP = XYPoint(P.x - A.x, P.y - A.y)
AB = XYPoint(B.x - A.x, B.y - A.y)
ab2 = AB.x * AB.x + AB.y * AB.y
ap_ab = AP.x * AB.x + AP.y * AB.y
t = ap_ab / ab2
if t < 0.0:
t = 0.0
elif t > 1.0:
t = 1.0
return XYPoint(A.x + AB.x * t, A.y + AB.y * t)
def get_closest_point_to_point(self, xy_point):
# Color is unreproducible, find the closest point on each line in the CIE 1931 'triangle'.
pAB = self.get_closest_point_to_line(self.Red, self.Lime, xy_point)
pAC = self.get_closest_point_to_line(self.Blue, self.Red, xy_point)
pBC = self.get_closest_point_to_line(self.Lime, self.Blue, xy_point)
# Get the distances per point and see which point is closer to our Point.
dAB = self.get_distance_between_two_points(xy_point, pAB)
dAC = self.get_distance_between_two_points(xy_point, pAC)
dBC = self.get_distance_between_two_points(xy_point, pBC)
lowest = dAB
closest_point = pAB
if (dAC < lowest):
lowest = dAC
closest_point = pAC
if (dBC < lowest):
lowest = dBC
closest_point = pBC
# Change the xy value to a value which is within the reach of the lamp.
cx = closest_point.x
cy = closest_point.y
return XYPoint(cx, cy)
def get_distance_between_two_points(self, one, two):
"""Returns the distance between two XYPoints."""
dx = one.x - two.x
dy = one.y - two.y
return math.sqrt(dx * dx + dy * dy)
def get_xy_point_from_rgb(self, red, green, blue):
"""Returns an XYPoint object containing the closest available CIE 1931 x, y coordinates
based on the RGB input values."""
r = ((red + 0.055) / (1.0 + 0.055))**2.4 if (red > 0.04045) else (red / 12.92)
g = ((green + 0.055) / (1.0 + 0.055))**2.4 if (green > 0.04045) else (green / 12.92)
b = ((blue + 0.055) / (1.0 + 0.055))**2.4 if (blue > 0.04045) else (blue / 12.92)
X = r * 0.664511 + g * 0.154324 + b * 0.162028
Y = r * 0.283881 + g * 0.668433 + b * 0.047685
Z = r * 0.000088 + g * 0.072310 + b * 0.986039
cx = X / (X + Y + Z)
cy = Y / (X + Y + Z)
# Check if the given XY value is within the colourreach of our lamps.
xy_point = XYPoint(cx, cy)
in_reach = self.check_point_in_lamps_reach(xy_point)
if not in_reach:
xy_point = self.get_closest_point_to_point(xy_point)
return xy_point
def get_rgb_from_xy_and_brightness(self, x, y, bri=1):
"""Inverse of `get_xy_point_from_rgb`. Returns (r, g, b) for given x, y values.
Implementation of the instructions found on the Philips Hue iOS SDK docs: http://goo.gl/kWKXKl
"""
# The xy to color conversion is almost the same, but in reverse order.
# Check if the xy value is within the color gamut of the lamp.
# If not continue with step 2, otherwise step 3.
# We do this to calculate the most accurate color the given light can actually do.
xy_point = XYPoint(x, y)
if not self.check_point_in_lamps_reach(xy_point):
# Calculate the closest point on the color gamut triangle
# and use that as xy value See step 6 of color to xy.
xy_point = self.get_closest_point_to_point(xy_point)
# Calculate XYZ values Convert using the following formulas:
Y = bri
X = (Y / xy_point.y) * xy_point.x
Z = (Y / xy_point.y) * (1 - xy_point.x - xy_point.y)
# Convert to RGB using Wide RGB D65 conversion
r = X * 1.656492 - Y * 0.354851 - Z * 0.255038
g = -X * 0.707196 + Y * 1.655397 + Z * 0.036152
b = X * 0.051713 - Y * 0.121364 + Z * 1.011530
# Apply reverse gamma correction
r, g, b = map(
lambda x: (12.92 * x) if (x <= 0.0031308) else ((1.0 + 0.055) * pow(x, (1.0 / 2.4)) - 0.055),
[r, g, b]
)
# Bring all negative components to zero
r, g, b = map(lambda x: max(0, x), [r, g, b])
# If one component is greater than 1, weight components by that value.
max_component = max(r, g, b)
if max_component > 1:
r, g, b = map(lambda x: x / max_component, [r, g, b])
r, g, b = map(lambda x: int(x * 255), [r, g, b])
# Convert the RGB values to your color object The rgb values from the above formulas are between 0.0 and 1.0.
return (r, g, b)
class Converter:
def __init__(self, gamut=GamutB):
self.color = ColorHelper(gamut)
def hex_to_xy(self, h):
"""Converts hexadecimal colors represented as a String to approximate CIE
1931 x and y coordinates.
"""
rgb = self.color.hex_to_rgb(h)
return self.rgb_to_xy(rgb[0], rgb[1], rgb[2])
def rgb_to_xy(self, red, green, blue):
"""Converts red, green and blue integer values to approximate CIE 1931
x and y coordinates.
"""
point = self.color.get_xy_point_from_rgb(red, green, blue)
return (point.x, point.y)
def xy_to_hex(self, x, y, bri=1):
"""Converts CIE 1931 x and y coordinates and brightness value from 0 to 1
to a CSS hex color."""
r, g, b = self.color.get_rgb_from_xy_and_brightness(x, y, bri)
return self.color.rgb_to_hex(r, g, b)
def xy_to_rgb(self, x, y, bri=1):
"""Converts CIE 1931 x and y coordinates and brightness value from 0 to 1
to a CSS hex color."""
r, g, b = self.color.get_rgb_from_xy_and_brightness(x, y, bri)
return (r, g, b)
def get_random_xy_color(self):
"""Returns the approximate CIE 1931 x,y coordinates represented by the
supplied hexColor parameter, or of a random color if the parameter
is not passed."""
r = self.color.random_rgb_value()
g = self.color.random_rgb_value()
b = self.color.random_rgb_value()
return self.rgb_to_xy(r, g, b)