-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathred_pitaya_asg.v
461 lines (375 loc) · 17.7 KB
/
red_pitaya_asg.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/**
* $Id: red_pitaya_asg.v 961 2014-01-21 11:40:39Z matej.oblak $
*
* @brief Red Pitaya arbitrary signal generator (ASG).
*
* @Author Matej Oblak
*
* (c) Red Pitaya http://www.redpitaya.com
*
* This part of code is written in Verilog hardware description language (HDL).
* Please visit http://en.wikipedia.org/wiki/Verilog
* for more details on the language used herein.
*/
/*
###############################################################################
# pyrpl - DSP servo controller for quantum optics with the RedPitaya
# Copyright (C) 2014-2016 Leonhard Neuhaus (neuhaus@spectro.jussieu.fr)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
###############################################################################
*/
/**
* GENERAL DESCRIPTION:
*
* Arbitrary signal generator takes data stored in buffer and sends them to DAC.
*
*
* /-----\ /--------\
* SW --------> | BUF | ------> | kx + o | ---> DAC CHA
* \-----/ \--------/
* ^
* |
* /-----\
* SW --------> | |
* | FSM | ------> trigger notification
* trigger ---> | |
* \-----/
* |
* ˇ
* /-----\ /--------\
* SW --------> | BUF | ------> | kx + o | ---> DAC CHB
* \-----/ \--------/
*
*
* Buffers are filed with SW. It also sets finite state machine which take control
* over read pointer. All registers regarding reading from buffer has additional
* 16 bits used as decimal points. In this way we can make better ratio betwen
* clock cycle and frequency of output signal.
*
* Finite state machine can be set for one time sequence or continously wrapping.
* Starting trigger can come from outside, notification trigger used to synchronize
* with other applications (scope) is also available. Both channels are independant.
*
* Output data is scaled with linear transmormation.
*
*/
module red_pitaya_asg (
// DAC
output [ 14-1: 0] dac_a_o , // DAC data CHA
output [ 14-1: 0] dac_b_o , // DAC data CHB
input dac_clk_i , // DAC clock
input dac_rstn_i, // DAC reset - active low
input trig_a_i , // starting trigger CHA
input trig_b_i , // starting trigger CHB
output [ 2-1: 0] trig_out_o, // notification trigger
input trig_scope_i , // trigger from the scope
output [ 14-1: 0] asg1phase_o,
/////////////////////////////////
/////////////////////////////////
input [ 14-1: 0] phase_a_in,
input [ 14-1: 0] phase_b_in,
input [ 14-1: 0] phase_both_in,
/////////////////////////////////
/////////////////////////////////
// System bus
input [ 32-1: 0] sys_addr , // bus address
input [ 32-1: 0] sys_wdata , // bus write data
input [ 4-1: 0] sys_sel , // bus write byte select
input sys_wen , // bus write enable
input sys_ren , // bus read enable
output reg [ 32-1: 0] sys_rdata , // bus read data
output reg sys_err , // bus error indicator
output reg sys_ack // bus acknowledge signal
);
//---------------------------------------------------------------------------------
//
// generating signal from DAC table
localparam RSZ = 14 ; // RAM size 2^RSZ
/////////////////////////////////
/////////////////////////////////
wire [RSZ+15:0] phase_a_mod;
wire [RSZ+15:0] phase_b_mod;
wire [RSZ+15:0] phase_both_mod;
localparam moddepth = 6;
localparam moddepth_both = 4;
assign phase_a_mod = {{moddepth{phase_a_in[13]}}, phase_a_in[13:0], {RSZ+16-14-moddepth{1'b0}}};
assign phase_b_mod = {{moddepth{phase_b_in[13]}}, phase_b_in[13:0], {RSZ+16-14-moddepth{1'b0}}};
assign phase_both_mod = {{moddepth_both{phase_both_in[13]}}, phase_both_in[13:0], {RSZ+16-14-moddepth_both{1'b0}}};
/////////////////////////////////
/////////////////////////////////
reg [RSZ+15: 0] set_a_size , set_b_size ;
reg [RSZ+15: 0] set_a_step , set_b_step ;
/////////////////////////////////
/////////////////////////////////
reg [RSZ+15: 0] set_a_step_mod;
reg [RSZ+15: 0] set_b_step_mod;
/////////////////////////////////
/////////////////////////////////
reg [RSZ+15: 0] set_a_ofs , set_b_ofs ;
reg set_a_rst , set_b_rst ;
reg set_a_once , set_b_once ;
reg set_a_wrap , set_b_wrap ;
reg [ 14-1: 0] set_a_amp , set_b_amp ;
reg [ 14-1: 0] set_a_dc , set_b_dc ;
reg set_a_zero , set_b_zero ;
reg [ 32-1: 0] set_a_ncyc , set_b_ncyc ;
reg [ 16-1: 0] set_a_rnum , set_b_rnum ;
reg [ 32-1: 0] set_a_rdly , set_b_rdly ;
reg set_a_rgate , set_b_rgate ;
reg buf_a_we , buf_b_we ;
reg [ RSZ-1: 0] buf_a_addr , buf_b_addr ;
wire [ 14-1: 0] buf_a_rdata , buf_b_rdata ;
wire [ RSZ-1: 0] buf_a_rpnt , buf_b_rpnt ;
reg [ 32-1: 0] buf_a_rpnt_rd, buf_b_rpnt_rd;
reg trig_a_sw , trig_b_sw ;
reg [ 3-1: 0] trig_a_src , trig_b_src ;
wire trig_a_done , trig_b_done ;
reg rand_a_on , rand_b_on ;
wire [ RSZ-1: 0] rand_pnt;
//advanced triggers for both channels
reg [64-1:0] at_counts_a;
reg at_reset_a;
reg at_invert_a;
reg at_autorearm_a;
wire at_trig_a;
red_pitaya_adv_trigger adv_trig_a (
.dac_clk_i (dac_clk_i) ,
.reset_i (at_reset_a),
.trig_i (trig_a_i) ,
.trig_o (at_trig_a) ,
.invert_i (at_invert_a),
.rearm_i (at_autorearm_a),
.hysteresis_i (at_counts_a)//stay on for hysteresis_i cycles
);
reg [64-1:0] at_counts_b;
reg at_reset_b;
reg at_invert_b;
reg at_autorearm_b;
wire at_trig_b;
red_pitaya_adv_trigger adv_trig_b (
.dac_clk_i (dac_clk_i) ,
.reset_i (at_reset_b),
.trig_i (trig_b_i) ,
.trig_o (at_trig_b) ,
.invert_i (at_invert_b),
.rearm_i (at_autorearm_b),
.hysteresis_i (at_counts_b)//stay on for hysteresis_i cycles
);
red_pitaya_asg_ch #(.RSZ (RSZ)) ch [1:0] (
// DAC
.dac_o ({dac_b_o , dac_a_o }), // dac data output
.dac_clk_i ({dac_clk_i , dac_clk_i }), // dac clock
.dac_rstn_i ({dac_rstn_i , dac_rstn_i }), // dac reset - active low
// trigger
.trig_sw_i ({trig_b_sw , trig_a_sw }), // software trigger
.trig_ext_i ({at_trig_a , at_trig_b }), // advanced trigger as ext trigger - backwards-compatible with original version
.trig_src_i ({trig_b_src , trig_a_src }), // trigger source selector
.trig_done_o ({trig_b_done , trig_a_done }), // trigger event
// buffer ctrl
.buf_we_i ({buf_b_we , buf_a_we }), // buffer buffer write
.buf_addr_i ({buf_b_addr , buf_a_addr }), // buffer address
.buf_wdata_i ({sys_wdata[14-1:0], sys_wdata[14-1:0]}), // buffer write data
.buf_rdata_o ({buf_b_rdata , buf_a_rdata }), // buffer read data
.buf_rpnt_o ({buf_b_rpnt , buf_a_rpnt }), // buffer current read pointer
// configuration
.set_size_i ({set_b_size , set_a_size }), // set table data size
////////////////////////////////
////////////////////////////////
.amp_mod ({phase_both_mod , phase_both_mod }),
.set_step_i ({set_b_step_mod , set_a_step_mod }), // set pointer step
////////////////////////////////
////////////////////////////////
.set_ofs_i ({set_b_ofs , set_a_ofs }), // set reset offset
.set_rst_i ({set_b_rst , set_a_rst }), // set FMS to reset
.set_once_i ({set_b_once , set_a_once }), // set only once
.set_wrap_i ({set_b_wrap , set_a_wrap }), // set wrap pointer
.set_amp_i ({set_b_amp , set_a_amp }), // set amplitude scale
.set_dc_i ({set_b_dc , set_a_dc }), // set output offset
.set_zero_i ({set_b_zero , set_a_zero }), // set output to zero
.set_ncyc_i ({set_b_ncyc , set_a_ncyc }), // set number of cycle
.set_rnum_i ({set_b_rnum , set_a_rnum }), // set number of repetitions
.set_rdly_i ({set_b_rdly , set_a_rdly }), // set delay between repetitions
.set_rgate_i ({set_b_rgate , set_a_rgate }), // set external gated repetition
.rand_on_i ({rand_b_on , rand_a_on }),
.rand_pnt_i ({rand_pnt , rand_pnt })
);
reg [RSZ-1: 0] trigbuf_rp_a ;
reg [RSZ-1: 0] trigbuf_rp_b ;
always @(posedge dac_clk_i) begin
if (dac_rstn_i == 1'b0) begin
trigbuf_rp_a <= {RSZ{1'b1}} ;
trigbuf_rp_b <= {RSZ{1'b1}} ;
end
else if (trig_scope_i) begin
trigbuf_rp_a <= buf_a_rpnt;
trigbuf_rp_b <= buf_b_rpnt;
end
end
always @(posedge dac_clk_i)
begin
buf_a_we <= sys_wen && (sys_addr[19:RSZ+2] == 'h1);
buf_b_we <= sys_wen && (sys_addr[19:RSZ+2] == 'h2);
buf_a_addr <= sys_addr[RSZ+1:2] ; // address timing violation
buf_b_addr <= sys_addr[RSZ+1:2] ; // can change only synchronous to write clock
end
assign trig_out_o = {trig_b_done,trig_a_done};
//---------------------------------------------------------------------------------
//
// System bus connection
reg [3-1: 0] ren_dly ;
reg ack_dly ;
always @(posedge dac_clk_i)
if (dac_rstn_i == 1'b0) begin
trig_a_sw <= 1'b0 ;
trig_a_src <= 3'h0 ;
set_a_amp <= 14'h2000 ;
set_a_dc <= 14'h0 ;
set_a_zero <= 1'b0 ;
set_a_rst <= 1'b0 ;
set_a_once <= 1'b0 ;
set_a_wrap <= 1'b0 ;
set_a_size <= {RSZ+16{1'b1}} ;
set_a_ofs <= {RSZ+16{1'b0}} ;
set_a_step <={{RSZ+15{1'b0}},1'b0} ;
set_a_ncyc <= 32'h0 ;
set_a_rnum <= 16'h0 ;
set_a_rdly <= 32'h0 ;
set_a_rgate <= 1'b0 ;
trig_b_sw <= 1'b0 ;
trig_b_src <= 3'h0 ;
set_b_amp <= 14'h2000 ;
set_b_dc <= 14'h0 ;
set_b_zero <= 1'b0 ;
set_b_rst <= 1'b0 ;
set_b_once <= 1'b0 ;
set_b_wrap <= 1'b0 ;
set_b_size <= {RSZ+16{1'b1}} ;
set_b_ofs <= {RSZ+16{1'b0}} ;
set_b_step <={{RSZ+15{1'b0}},1'b0} ;
set_b_ncyc <= 32'h0 ;
set_b_rnum <= 16'h0 ;
set_b_rdly <= 32'h0 ;
set_b_rgate <= 1'b0 ;
ren_dly <= 3'h0 ;
ack_dly <= 1'b0 ;
at_counts_a <= {64{1'b0}};
at_reset_a <= 1'b1;
at_invert_a <= 1'b0;
at_autorearm_a <= 1'b0;
at_counts_b <= {64{1'b0}};
at_reset_b <= 1'b1;
at_invert_b <= 1'b0;
at_autorearm_b <= 1'b0;
rand_a_on <= 1'b0;
rand_b_on <= 1'b0;
/////////////////////////////////
/////////////////////////////////
set_a_step_mod <= {{RSZ+15{1'b0}}, 1'b0};
set_b_step_mod <= {{RSZ+15{1'b0}}, 1'b0};
/////////////////////////////////
/////////////////////////////////
end else begin
/////////////////////////////////
/////////////////////////////////
set_a_step_mod <= $signed(set_a_step) + $signed(phase_a_mod);
set_b_step_mod <= $signed(set_b_step) + $signed(phase_b_mod);
/////////////////////////////////
/////////////////////////////////
trig_a_sw <= sys_wen && (sys_addr[19:0]==20'h0) && sys_wdata[0] ;
if (sys_wen && (sys_addr[19:0]==20'h0))
trig_a_src <= sys_wdata[2:0] ;
trig_b_sw <= sys_wen && (sys_addr[19:0]==20'h0) && sys_wdata[16] ;
if (sys_wen && (sys_addr[19:0]==20'h0))
trig_b_src <= sys_wdata[19:16] ;
if (sys_wen) begin
if (sys_addr[19:0]==20'h0) {rand_a_on, at_autorearm_a, at_invert_a, at_reset_a, set_a_rgate, set_a_zero, set_a_rst, set_a_once, set_a_wrap} <= sys_wdata[12: 4] ;
if (sys_addr[19:0]==20'h0) {rand_b_on, at_autorearm_b, at_invert_b, at_reset_b, set_b_rgate, set_b_zero, set_b_rst, set_b_once, set_b_wrap} <= sys_wdata[28:20] ;
if (sys_addr[19:0]==20'h4) set_a_amp <= sys_wdata[ 0+13: 0] ;
if (sys_addr[19:0]==20'h4) set_a_dc <= sys_wdata[ 16+13:16] ;
if (sys_addr[19:0]==20'h8) set_a_size <= sys_wdata[RSZ+15: 0] ;
if (sys_addr[19:0]==20'hC) set_a_ofs <= sys_wdata[RSZ+15: 0] ;
if (sys_addr[19:0]==20'h10) set_a_step <= sys_wdata[RSZ+15: 0] ;
if (sys_addr[19:0]==20'h18) set_a_ncyc <= sys_wdata[ 32-1: 0] ;
if (sys_addr[19:0]==20'h1C) set_a_rnum <= sys_wdata[ 16-1: 0] ;
if (sys_addr[19:0]==20'h20) set_a_rdly <= sys_wdata[ 32-1: 0] ;
if (sys_addr[19:0]==20'h24) set_b_amp <= sys_wdata[ 0+13: 0] ;
if (sys_addr[19:0]==20'h24) set_b_dc <= sys_wdata[ 16+13:16] ;
if (sys_addr[19:0]==20'h28) set_b_size <= sys_wdata[RSZ+15: 0] ;
if (sys_addr[19:0]==20'h2C) set_b_ofs <= sys_wdata[RSZ+15: 0] ;
if (sys_addr[19:0]==20'h30) set_b_step <= sys_wdata[RSZ+15: 0] ;
if (sys_addr[19:0]==20'h38) set_b_ncyc <= sys_wdata[ 32-1: 0] ;
if (sys_addr[19:0]==20'h3C) set_b_rnum <= sys_wdata[ 16-1: 0] ;
if (sys_addr[19:0]==20'h40) set_b_rdly <= sys_wdata[ 32-1: 0] ;
if (sys_addr[19:0]==20'h118) at_counts_a[32-1:0] <= sys_wdata[32-1: 0] ;
if (sys_addr[19:0]==20'h11C) at_counts_a[64-1:32] <= sys_wdata[32-1: 0] ;
if (sys_addr[19:0]==20'h138) at_counts_b[32-1:0] <= sys_wdata[32-1: 0] ;
if (sys_addr[19:0]==20'h13C) at_counts_b[64-1:32] <= sys_wdata[32-1: 0] ;
end
// disabled to improve fpga timing and space
//if (sys_ren) begin
// buf_a_rpnt_rd <= {{32-RSZ-2{1'b0}},buf_a_rpnt,2'h0};
// buf_b_rpnt_rd <= {{32-RSZ-2{1'b0}},buf_b_rpnt,2'h0};
//end
ren_dly <= {ren_dly[3-2:0], sys_ren};
ack_dly <= ren_dly[3-1] || sys_wen ;
end
wire [32-1: 0] r0_rd = {3'h0,rand_b_on,at_autorearm_b,at_invert_b,at_reset_b,set_b_rgate, set_b_zero,set_b_rst,set_b_once,set_b_wrap, 1'b0,trig_b_src,
3'h0,rand_a_on,at_autorearm_a,at_invert_a,at_reset_a,set_a_rgate, set_a_zero,set_a_rst,set_a_once,set_a_wrap, 1'b0,trig_a_src };
wire sys_en;
assign sys_en = sys_wen | sys_ren;
always @(posedge dac_clk_i)
if (dac_rstn_i == 1'b0) begin
sys_err <= 1'b0 ;
sys_ack <= 1'b0 ;
end else begin
sys_err <= 1'b0 ;
casez (sys_addr[19:0])
20'h00000 : begin sys_ack <= sys_en; sys_rdata <= r0_rd ; end
20'h00004 : begin sys_ack <= sys_en; sys_rdata <= {2'h0, set_a_dc, 2'h0, set_a_amp} ; end
20'h00008 : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-16{1'b0}},set_a_size} ; end
20'h0000C : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-16{1'b0}},set_a_ofs} ; end
20'h00010 : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-16{1'b0}},set_a_step} ; end
20'h00014 : begin sys_ack <= sys_en; sys_rdata <= buf_a_rpnt_rd ; end
20'h00018 : begin sys_ack <= sys_en; sys_rdata <= set_a_ncyc ; end
20'h0001C : begin sys_ack <= sys_en; sys_rdata <= {{32-16{1'b0}},set_a_rnum} ; end
20'h00020 : begin sys_ack <= sys_en; sys_rdata <= set_a_rdly ; end
20'h00024 : begin sys_ack <= sys_en; sys_rdata <= {2'h0, set_b_dc, 2'h0, set_b_amp} ; end
20'h00028 : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-16{1'b0}},set_b_size} ; end
20'h0002C : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-16{1'b0}},set_b_ofs} ; end
20'h00030 : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-16{1'b0}},set_b_step} ; end
20'h00034 : begin sys_ack <= sys_en; sys_rdata <= buf_b_rpnt_rd ; end
20'h00038 : begin sys_ack <= sys_en; sys_rdata <= set_b_ncyc ; end
20'h0003C : begin sys_ack <= sys_en; sys_rdata <= {{32-16{1'b0}},set_b_rnum} ; end
20'h00040 : begin sys_ack <= sys_en; sys_rdata <= set_b_rdly ; end
20'h00114 : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-2{1'b0}},trigbuf_rp_a} ; end
20'h00118 : begin sys_ack <= sys_en; sys_rdata <= at_counts_a[32-1:0] ; end
20'h0011C : begin sys_ack <= sys_en; sys_rdata <= at_counts_a[64-1:32] ; end
20'h00134 : begin sys_ack <= sys_en; sys_rdata <= {{32-RSZ-2{1'b0}},trigbuf_rp_b} ; end
20'h00138 : begin sys_ack <= sys_en; sys_rdata <= at_counts_b[32-1:0] ; end
20'h0013C : begin sys_ack <= sys_en; sys_rdata <= at_counts_b[64-1:32] ; end
20'h1zzzz : begin sys_ack <= ack_dly; sys_rdata <= {{32-14{1'b0}},buf_a_rdata} ; end
20'h2zzzz : begin sys_ack <= ack_dly; sys_rdata <= {{32-14{1'b0}},buf_b_rdata} ; end
default : begin sys_ack <= sys_en; sys_rdata <= 32'h0 ; end
endcase
end
// forward the current phase of asg1;
assign asg1phase_o = buf_a_rpnt;
//red_pitaya_prng_lehmer
red_pitaya_prng_xor #(.OUTBITS (RSZ)) prng (
.clk_i (dac_clk_i ), // dac clock
.reset_i (dac_rstn_i ), // dac reset - active low
.signal_o (rand_pnt)
);
endmodule