-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclass_oblivious.py
85 lines (67 loc) · 2.68 KB
/
class_oblivious.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import sys
import torch
import common
import numpy as np
import torch.nn as nn
import os.path as osp
from utils import lr_utils
import torch.optim as optim
from utils import heatmap_utils
from configs.base_config import Config
from constraint_attention_filter import L2_CAF
def main(cfg):
cfg.logger.info(cfg)
output_dir = cfg.output_dir
img_name_ext = cfg.input_img
img_name, _ = osp.splitext(img_name_ext)
rgb_img , pytorch_img = common.load_img(img_name_ext)
pytorch_img = pytorch_img.cuda()
arch_name = cfg.arch #'resnet50'
model,last_conv_feature_maps,post_conv_subnet = common.load_architecture(arch_name)
NT = model(pytorch_img)
A = last_conv_feature_maps[-1] ## Last conv layer feature maps extracted using a PyTorch hook
l2_caf = L2_CAF(A.shape[-1]).cuda()
max_iter = cfg.max_iter
initial_lr = cfg.lr
l2loss = nn.MSELoss() ## || NT - FT ||^2
optimizer = optim.SGD(l2_caf.parameters(),lr=initial_lr)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: lr_utils.polynomial_lr_decay(step,
init_learning_rate=initial_lr,
max_iter=max_iter) / initial_lr)
MAX_INT = np.iinfo(np.int16).max
prev_loss = torch.tensor(MAX_INT).cuda()
iteration = 0
while iteration < max_iter:
FT = post_conv_subnet(l2_caf(A))
loss = l2loss(FT,NT)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
if iteration % 50 == 0:
if torch.abs(loss.item() - prev_loss) < cfg.min_error:
break
prev_loss = loss
iteration += 1
cfg.logger.info('Done after {} iterations'.format(iteration))
## Save result filter
frame_mask = common.normalize_filter(l2_caf.filter.detach().cpu().numpy())
heatmap_utils.apply_heatmap(rgb_img, frame_mask, alpha=0.6,
save=output_dir + img_name + '_cls_oblivious_{}.png'.format(arch_name),
axis='off', cmap='bwr')
if __name__ == '__main__':
if len(sys.argv) == 1:
print('Loading the default parameters')
default_args = [
'--output_dir', './output_heatmaps/',
'--max_iter', '1000',
"--lr", '0.5',
"--arch",'densenet169',
# '--input_img','dog_ball.jpg',
'--input_img', 'dog_butterfly.jpg',
]
cfg = Config().parse(default_args)
else:
print('Loading parameters from cmd line')
cfg = Config().parse(None)
main(cfg)