-
Implementing a a custom deep learning model based on the U-Net architecture, enhanced with features like recurrent atrous spatial pyramid pooling, attention mechanisms, and RRCNN blocks for MRI brain tumor segmentation
-
Processed dataset is available here
The directory structure below shows the nature of files/directories used in this repo.
BRATS-Image-Segmentation
│
├── README.md
│
├── data
│ ├── BraTS2019 # Main data
│ ├── interim # Intermediate data that has been processed
│ └── processed
│ ├── train # Processed training data
│ └── valid # Processed validation data
│
├── models
│ └── Model.png # Model architecture visualization
│
├── notebooks
│ ├── Brats_DL.ipynb # Notebook for model training
│ └── Brats_Prep.ipynb # Notebook for data preprocessing
│
└── src
├── preprocessing
│ ├── N4biasfieldcor.py # Bias field correction
│ ├── image_cropper.py # Crop 3D images
│ ├── image_processor.py # Process 3D images and masks
│ ├── create_folds.py # Data creation and folding
│ ├── utils.py # Preprocessing utilities
│ └── __init__.py
├── Modules.py # DLUNetModel and ImageVisualizer classes
├── __init__.py
└── utils.py # General utilities